| [1] | An J, Li H Y, Zhang Z M. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains. Numerical Algorithms, 2020, 84(2): 427-455 | | [2] | An J, Luo Z D. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain. Journal of Mathematical Analysis and Applications, 2016, 439(1): 385-395 | | [3] | An J, Shen J. A Spectral-Element method for transmission eigenvalue problems. Journal of Scientific Computing, 2013, 57(3): 670-688 | | [4] | An J. A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues. Applied Numerical Mathematics, 2016, 108: 171-184 | | [5] | BABU ? KA I, Osborn J. Eigenvalue problems. Handbook of Numerical Analysis, 1991, 2: 641-787 | | [6] | Banerjee U, Osborn J E. Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numerische Mathematik, 1989, 56(8): 735-762 | | [7] | Boffi D. Finite element approximation of eigenvalue problems. Acta Numerica, 2010, 19: 1-120 | | [8] | Chen L Z, An J, Zhuang Q Q. Direct solvers for the biharmonic eigenvalue problems using Legendre polynomials. Journal of Scientific Computing, 2017, 70(3): 1030-1041 | | [9] | Chen L Z, Shen J, Xu C J. A triangular spectral method for the Stokes equations. Numerical Mathematics: Theory, Methods and Applications, 2011, 4(2): 158-179 | | [10] | Dubiner M. Spectral methods on triangles and other domains. Journal of Scientific Computing, 1991, 6(4): 345-390 | | [11] | Fu H F, Rui H X, Hou J, et al. A stabilized mixed finite element method for elliptic optimal control problems. Journal of Scientific Computing, 2016, 66(3): 968-986 | | [12] | Ge Y X, Tan T, An J. A high accuracy numerical method and error analysis for fourth order elliptic eigenvalue problems in circular domain. Advances in Applied Mathematics and Mechanics, 2020, 12(3): 815-834 | | [13] | Grebenkov D S, Nguyen B T. Geometrical structure of Laplacian eigenfunctions. SIAM Review, 2013, 55(4): 601-667 | | [14] | Griffin A, Snoke D W, Stringari S. Bose-Einstein Condensation. Cambridge University Press, 1996 | | [15] | Kuttler J R. A finite-difference approximation for the eigenvalues of the clamped plate. Numerische Mathematik, 1971, 17(3): 230-238 | | [16] | Lamichhane B P. A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. Journal of Computational and Applied Mathematics, 2011, 235(17): 5188-5197 | | [17] | Mercier B, Osborn J, Rappaz J, et al. Eigenvalue approximation by mixed and hybrid methods. Mathematics of Computation, 1981, 36(154): 427-453 | | [18] | Neese F. Prediction of electron paramagnetic resonance$g$values using coupled perturbed Hartree-Fock and Kohn-Sham theory. Chem Phys, 2001, 115(24): 11080-11096 | | [19] | Pasquetti R, Rapetti F. Spectral element methods on unstructured meshes: Comparisons and recent advances. Journal of Scientific Computing, 2006, 27(1): 377-387 | | [20] | Rannacher R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numerische Mathematik, 1979, 33(1): 23-42 | | [21] | Shen J, Wang L L, Li H Y. A triangular spectral element method using fully tensorial rational basis functions. SIAM Journal on Numerical Analysis, 2009, 47(3): 1619-1650 | | [22] | Sherwin S J, Karniadakis G E. A triangular spectral element method: Applications to the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1-4): 189-229 | | [23] | Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 2009, 102(7): 073005 |
|