| [1] | Chen J. EC-($t_1$,$t_2$)-tractability of approximation in weighted Korobov spaces in the worst case setting. Journal of Complexity, 2022, 73: 101680 | | [2] | Dick J, Kritzer P, Pillichshammer F, Wo?niakowski H. Approximation of analytic functions in Korobovspaces. Journal of Complexity, 2014, 30: 2-28 | | [3] | Dick J, Larcher G, Pillichshammer F, Wo?niakowski H. Exponential convergence and tractability of multivariateintegration for Korobov spaces. Math Comp, 2011, 80: 905-930 | | [4] | Gnewuch M, Wo?niakowski H. Quasi-polynomial tractability. Journal of Complexity, 2011, 27: 312-330 | | [5] | Irrgeher C, Kritzer P, Pillichshammer F, Wo?niakowski H. Tractability of multivariate approximation definedover Hilbert spaces with exponential weights. J Approx Theory, 2016, 207: 301-338 | | [6] | Kritzer P, Pillichshammer F, Wo?niakowski H. Multivariate integration of infinitely many times differentiablefunctions in weighted Korobov spaces. Math Comp, 2014, 83: 1189-1206 | | [7] | Kritzer P, Pillichshammer F, Wo?niakowski H. $\mathbb{L}_\infty$-approximation in Korobov spaces with exponentialweights. Journal of Complexity, 2017, 41: 102-125 | | [8] | Kritzer P, Pillichshammer F, Wo?niakowski H. Exponential tractability of linear weighted tensor productproblems in the worst-case setting for arbitrary linear functionals. Journal of Complexity, 2020, 61: 101501 | | [9] | Kuo F Y, Wasilkowski G W, Wo?niakowski H. Multivariate $\mathbb{L}_\infty$-approximation in the worst case settingover reproducing kernel Hilbert spaces. J Approx Theory, 2008, 152: 135-160 | | [10] | Liu Y P, Zhang J. EC-tractability of approximation problems in function spaces defined over products ofsimplices. Journal of Complexity, 2019, 55: 101411 | | [11] | Novak E, Wo?niakowski H. Tractability of Multivariate Problems: Volume I: Linear Information. Helsinki:European Mathematical Society, 2008 | | [12] | Novak E, Wo?niakowski H. Tractability of Multivariate Problems: Volume II: Standard Information forFunctionals. Helsinki: European Mathematical Society, 2010 | | [13] | Novak E, Wo?niakowski H. Tractability of Multivariate Problems: Volume III: Standard Information forOperators. Helsinki: European Mathematical Society, 2012 | | [14] | Siedlecki P. Uniform weak tractability. Journal of Complexity, 2013, 29: 438-453 | | [15] | Siedlecki P, Weimar M. Notes on $(s,t)$-weak tractability: A refined classification of problems with(sub)exponential information complexity. J Approx Theory, 2015, 200: 227-258 | | [16] | Sloan I H, Wo?niakowski H. When are Quasi-Monte Carlo algorithms efficient for high-dimensional integrals?. Journal of Complexity, 1998, 14: 1-33 | | [17] | Sloan I H, Wo?niakowski H. Multivariate approximation for analytic functions with Gaussian kernels. Journal of Complexity, 2018, 45: 1-21 | | [18] | Traub J, Wasilkowski G, Wo?niakowski H. Information-Based Complexity. New York: Academic Press,1988 | | [19] | Wang H. A note about EC-$(s,t)$-weak tractability of multivariate approximation with analytic Korobovkernels. Journal of Complexity, 2019, 55: 101412 | | [20] | Wo?niakowski H. Tractability and strong tractability of linear multivariate problems. Journal of Complexity, 1994, 10: 96-128 | | [21] | Wo?niakowski H. Tractability and strong tractability of multivariate tensor product problems. J ComputInform, 1994, 4: 1-19 | | [22] | Xu G. EC-tractability of $\mathbb{L}_p$-approximation in Korobov spaces with exponential weights. J Approx Theory, 2020, 249: 105309 | | [23] | Zeng X, Kritzer P, Hickernell F J. Spline methods using integration lattice and digital nets. Constr Approx, 2009, 30: 529-555 | | [24] | Zhang J. A note on EC-tractability of multivariate approximation in weighted Korobov spaces for thestandard information class. Journal of Complexity, 2021, 67: 101573 | | [25] | Zhang J, Liu Y P. Quasi-Monte Carlo tractability of integration problem in function spaces defined overproducts of balls. Int J Wavelets Multiresolut Inf Process, 2019, 17(6): 1950043 | | [26] | Zhang J, Liu Y P. EC-tractability of multivariate approximation in Hermite spaces for the standard informationclass. Int J Wavelets Multiresolut Inf Process, 2022, 20(6): 2250029 |
|