| [1] | Virtamo J, Norros I. Fluid queue driven by an M/M/1 queue. Queueing Systems, 1994, 16(3/4): 373-386 | | [2] | Adan I, Resing J. Simple analysis of a fluid queue driven by an M/M/1 queue. Queueing Systems, 1996, 22(1/2): 171-174 | | [3] | Kulkarni V G. Fluid models for single buffer systems. Econometrica, 1997, 40(5): 321-338 | | [4] | Sericola B, Tuffin B. A fluid queue driven by a Markovian queue. Queueing Systems Theory and Applications, 1999, 31(3/4): 253-264 | | [5] | Lierde S V, Soares A S, Latouche G. Invariant measures for fluid queues. Stochasyic Models, 2008, 24(1): 133-151 | | [6] | Ammar, Sherif I. Fluid queue driven by an M/M/1 disasters queue. International Journal of Computer Mathematics, 2014, 91(7): 1497-1506 | | [7] | Wang F W, Mao B W. Fluid model driven by an M/M/1 queue with set-up and close-down period. Applied Mechanics and Materials, 2014, 513-517: 3377-3380 | | [8] | 徐秀丽, 王现英, 李晓庆. 具有可选服务的 M/M/1 排队驱动的流模型. 西北师范大学学报(自然科学版), 2016, 52(1): 21-24 | | [8] | Xu X L, Wang X Y, Li X Q. Fluid model driven by an M/M/1 queue with optional service. Journal of Northwest Normal University (Natural Science), 2016, 52(1): 21-24 | | [9] | 孙红霜. 带有工作故障的 M/M/1 重试排队流模型的系统性能分析. 南京: 南京信息工程大学, 2022 | | [9] | Sun H S. Performance analysis of the fluid model driven by M/M/1 queue with working breakdown strategies and retrial strategy. Nanjing: Nanjing University of Information Science and Technology, 2022 | | [10] | Ammar, Sherif I. Analysis of an M/M/1 driven fluid queue with multiple exponential vacations. Applied Mathematics and Computation, 2014, 227: 329-334 | | [11] | Mao B W, Wang F W, Tian N S. Fluid model driven by an M/M/1/N queue with exponential vacations. Journal of Computational Information Systems, 2010, 6(6): 1809-1816 | | [12] | Vijayashree K V, Anjuka A. Fluid queue modulated by an M/M/1/N queue subject to multiple exponential working vacation. International Journal of Pure and Applied Mathematics, 2017, 113(13): 153-162 | | [13] | 徐秀丽, 王现英, 徐彪. 可选服务的 M/M/1 多重休假排队系统驱动的流模型. 数学的实践与认识, 2018, 48(6): 155-161 | | [13] | Xu X L, Wang X Y, Xu B. A fluid model driven by an M/M/1 vacations queue with optional service. Mathematics in Practice and Theory, 2018, 48(6): 155-161 | | [14] | Xu X L, Wang X Y, Song X F, et al. Fluid model modulated by an M/M/ 1 working vacation queue with negative customer. Acta Mathematicae Applicatae Sinica-English Series, 2018, 34(2): 404-415 | | [15] | 刘煜飞, 叶晴晴. 基于矩阵分析方法的具有双阶段休假的排队系统驱动的流模型性能分析. 数学的实践与认识, 2021, 51(4): 189-199 | | [15] | Liu Y F, Ye Q Q. Performance analysis of the fluid model driven by M/M/1 queuing system with two-stage vacation based on matrix analysis method. Mathematics in Practice and Theory, 2021, 51(4): 189-199 | | [16] | 李子坤, 徐秀丽, 岳德权. 单重工作休假 M/M/c 排队驱动的流体模型分析. 数学物理学报, 2021, 41A(1): 254-268 | | [16] | Li Z K, Xu X L, Yue D Q. Analysis of the fluid model driven by M/M/c queue with single working vacation. Acta Mathematica Sci, 2021, 41A(4): 254-268 | | [17] | 王勋, 徐秀丽. 基于启动时间和可选服务的双阶段休假排队系统的流体模型性能分析. 数学物理学报, 2023, 43A(6): 1943-1960 | | [17] | Wang X, Xu X L. Performance analysis of a fluid model driven by two-stage vacation queue with set-up time and optimal service. Acta Mathematica Sci, 2023, 43A(6): 1943-1960 |
|