[1] |
Avila A, Bochi J, Damanik D. Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math J, 2009, 146(2): 253-280
|
[2] |
Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc, 2009, 12(1): 93-131
|
[3] |
Bochner S, Martin W T. Several Complex Variables. Princeton NJ: Princeton University Press, 1948
|
[4] |
Bourgain J. Green's Function Estimates for Lattice Schrödinger Operators and Applications. Princeton NJ: Princeton University Press, 2005
|
[5] |
Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann of Math, 2000, 152(3): 835-879
|
[6] |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on $ \mathbb{Z} $ with potentials given by the skew-shift. Comm Math Phys, 2001, 220: 583-621
|
[7] |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on $ \mathbb{Z}^2 $ with quasi-periodic potential. Acta Math, 2002, 188: 41-86
|
[8] |
Bourgain J, Schlag W. Anderson localization for Schrödinger operators on $ \mathbb{Z} $ with strongly mixing potentials. Comm Math Phys, 2000, 215(1): 143-175
|
[9] |
Bucaj V, Damanik D, Fillman J, et al. Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent. Trans Amer Math Soc, 2019, 372(5): 3619-3667
|
[10] |
Cantero M J, Moral L, Grünbaum F A, Velázquez L. Matrix-valued Szegö polynomials and quantum random walks. Comm Pure Appl Math, 2010, 63(4): 464-507
|
[11] |
Cantero M J, Moral L, Velázquez L. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl, 2003, 362: 29-56
|
[12] |
Cedzich C, Werner A H. Anderson localization for electric quantum walks and skew-shift CMV matrices. Comm Math Phys, 2021, 387(3): 1257-1279
|
[13] |
Chulaevsky V A, Sinai Ya G. Anderson localization for the $ 1 $-D discrete Schrödinger operator with two-frequency potential. Comm Math Phys, 1989, 125: 91-112
|
[14] |
Damanik D. Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam Systems, 2017, 37(6): 1681-1764
|
[15] |
Damanik D, Fillman J, Lukic M, Yessen W. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin Dyn Syst S, 2016, 9(4): 1009-1023
|
[16] |
Davis E B, Simon B. Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle. J Approximation Theory, 2006, 141(2): 189-213
|
[17] |
Fillman J, Ong D C. Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks. J Funct Anal, 2017, 272(12): 5107-5143
|
[18] |
Goldstein M, Schlag W. Hölder continuity of the integrated density of the sates for quasiperodic Schrödinger equations and averages of shifts of subharmonic functions. Ann of Math, 2001, 154(1): 155-203
|
[19] |
Guo S, Piao D. Lyapunov behavior and dynamical localization for quasi-periodic CMV matrices. Linear Algebra Appl, 2020, 606: 68-89
|
[20] |
Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883-899
|
[21] |
Klein S. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J Funct Anal, 2005, 218(2): 255-292
|
[22] |
Krüger H. Orthogonal polynomials on the unit circle with Verblunsky coefficients defined by the skew-shift. Int Math Res Not, 2013, 2013(18): 4135-4169
|
[23] |
Krüger H. The spectrum of skew-shift Schrödinger operators contains intervals. J Funct Anal, 2012, 262(3): 773-810
|
[24] |
Lagendijk A, Tiggelen B, Wiersma D. Fifty years of Anderson localization. Phys Today, 2009, 62(8): 24-29
|
[25] |
Lin Y X, Piao D X, Guo S Z. Anderson localization for the quasi-periodic CMV matrices with Verblunsky coefficients defined by the skew-shift. J Funct Anal, 2023, 285(4): 109975
|
[26] |
Simon B. Orthogonal Polynomials on the Unit Circle. Province RI: American Mathematical Society, 2005
|
[27] |
Sinai Y G. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J Stat Phys, 1987, 46(5/6): 861-909
|
[28] |
Tao K. Non-perturbative positive Lyapunov exponent of Schrödinger equations and its applications to skew-shift mapping. J Differential Equations, 2019, 266(6): 3559-3579
|
[29] |
Wang F, Damanik D. Anderson localization for quasi-periodic CMV matrices and quantum walks. J Funct Anal, 2019, 276(6): 1978-2006
doi: 10.1016/j.jfa.2018.10.016
|
[30] |
Zhang Z. Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. J Spectr Theory, 2020, 10(4): 1471-1517
|
[31] |
Zhu X W. Localization for the random CMV matrices. J Approx Theory, 2024, 298: 106008
|