| [1] | Iragi B C, Munyakazi J B. A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation. Int J Comput Math, 2020, 97(4): 759-771 |
| [2] | Hoppensteadt F C. An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes. SIAM J Appl Math, 1983, 43(4): 834-843 |
| [3] | Lodge A S, McLeod J B, Nohel J A. A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology. Proc R Soc Edinburgh Sect A, 1978, 80(1/2): 99-137 |
| [4] | Jordan G S. A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type. Proc R Soc Edinburgh Sect A, 1978, 80(3/4): 235-247 |
| [5] | Yapman ?, Amiraliyev G M. A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. Int J Comput Math, 2020, 97(6): 1293-1302 |
| [6] | ?evgin S. Numerical solution of a singularly perturbed Volterra integro-differential equation. Adv Difference Equ, 2014, 171: 1-15 |
| [7] | Huang J, Cen Z, Xu A, Liu L B. A posteriori error estimation for a singularly perturbed Volterra integro-differential equation. Numer Algorithms, 2020, 83(2): 549-563 |
| [8] | Sumit S, Kumar J, Vigo-Aguiar. Analysis of a nonlinear singularly perturbed Volterra integro-differential equation. J Comput Appl Math, 2021, Article 113410 |
| [9] | Nhan T A, Vulanovi? R. Analysis of the truncation error and barrier-function technique for a Bakhvalov-type mesh. Electron Trans Numer Anal, 2019, 51: 315-330 |
| [10] | Long G, Liu L B, Huang Z. Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations. Numer Funct Anal Optim, 2021, 42: 739-757 |
| [11] | Lin? T. Error expansion for a first-order upwind difference scheme applied to a model convection-diffusion problem. IMA J Numer Anal, 2004, 24: 239-253 |
| [12] | Bakhvalov N S. The optimization of methods of solving boundary value problems with a boundary layer. Comp Math Math Phys, 1969, 9(4): 139-166 |
| [13] | Boglaev I P. Approximate solution of a nonlinear boundary value problem with a small parameter at the highest-order derivative. USSR Comput Math Math Phys, 1984, 24(6): 30-35 |
| [14] | Andreev V B, Kopteva N V. On the convergence, uniform with respect to a small parameter of monotone three-point finite difference approximations. Differ Equations, 1998, 34(7): 921-929 |
| [15] | Kopteva N V. On the uniform with respect to a small parameter convergence of the central difference scheme on condensing meshes. Comp Math Math Phys, 1999, 39(10): 1594-1610 |
| [16] | Kopteva N. Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes. Computing, 2001, 66: 179-197 |
| [17] | Vulanovi? R. On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh. Univ u Novom Sadu Zb Rad Prir Mat Fak Ser Mat, 1983, 13: 187-201 |
| [18] | Lin? T. Sufficient conditions for uniform convergence on layer-adapted grids. Appl Numer Math, 2001, 37: 241-255 |
| [19] | Roos H G, Lin? T. Sufficient conditions for uniform convergence on layer-adapted grids. Computing, 1999, 63: 27-45 |
| [20] | Kudu M, Amirali I, Amiraliyev G M. A finite-difference method for a singularly perturbed delay integro-differential equation. J Comput Appl Math, 2016, 308: 379-390 |
| [21] | Amiraliyev G M, ?evgin S. Uniform difference method for singularly perturbed Volterra integro-differential equations. Applied Mathematics and Computation, 2006, 179(2): 731-741 |