数学物理学报 ›› 2025, Vol. 45 ›› Issue (4): 1023-1040.

• • 上一篇    下一篇

平面具有四元数字集自相似测度的谱结构研究

吕军()   

  1. 新疆农业大学数理学院 乌鲁木齐 830052
  • 收稿日期:2024-08-26 修回日期:2025-01-26 出版日期:2025-08-26 发布日期:2025-08-01
  • 作者简介:E-mail: lvjun136248@sina.com
  • 基金资助:
    国家自然科学基金(12371087);自治区高校基本科研业务费科研项目(XJEDU2025P045)

The Study on Spectral Structure of Planar Self-Similar Measures with Four Element Digit Sets

Lü Jun()   

  1. College of Mathematics and Physics, XinJiang Agricultural University, Urumqi 830052
  • Received:2024-08-26 Revised:2025-01-26 Online:2025-08-26 Published:2025-08-01
  • Supported by:
    NSFC(12371087);Basic Research Funds for Autonomous Region Universities Research Projects(XJEDU2025P045)

摘要:

$Q=\begin{pmatrix} b & 0\\ 0 & b \end{pmatrix}$是一整扩张矩阵且设$\mathcal{D}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 0 \\ 1 \end{pmatrix},\,\,\begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$ 是一四元数字集,作者考虑由上述整扩张矩阵$Q$和四元数字集$\mathcal{D}$所生成的自相似测度$\mu_{Q,\mathcal{D}}$ 的谱结构.测度$\mu_{Q,\mathcal{D}}$是谱测度当且仅当$b=2q$,$q\in \mathbb{N} $,并且此测度的谱是如下集

$\Lambda(Q,\mathcal{C}_q)=\left\{\sum_{k=0}^{n}Q^{k}\mathcal{C}_{q}:\,\,n\geq 1\right\}:=\mathcal{C}_{q}+Q\mathcal{C}_{q}+Q^{2}\mathcal{C}_{q}+\cdots,\,\,\text{所有有限和},$

其中$\mathcal{C}_{q}=q\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 0 \\ 1 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. 该文通过极大树映射研究了测度$\mu_{Q,\mathcal{D}}$的极大正交集的结构并且在此基础上探讨了其谱特征矩阵的相关问题.

关键词: 极大树映射, 谱特征矩阵, 谱测度, 谱结构, 自相似测度

Abstract:

Let $Q=\begin{pmatrix} b & 0\\ 0 & b \end{pmatrix}$ be an integer expanding matrix and let $\mathcal{D}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$ be a four element digit set. We considered the spectral structure of self-similar measure $\mu_{Q,\mathcal{D}}$ which generated by an integer expanding matrix $Q$ and a four element digits $\mathcal{D}$. It is well known that $\mu_{Q,\mathcal{D}}$ is a spectral measure if and only if $b=2q$ for some $q\in\mathbb{N}$. The spectrum for this spectral measure is the following set

$\Lambda(Q,\mathcal{C}_q)=\left\{\sum_{k=0}^{n}Q^{k}\mathcal{C}_{q}:\,\,n\geq 1\right\}:=\mathcal{C}_{q}+Q\mathcal{C}_{q}+Q^{2}\mathcal{C}_{q}+\cdots,\,\,\text{all}\,\,\text{finite}\,\,\text{sums},$

where $\mathcal{C}_{q}=q\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 0 \\ 1 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. In this paper, we investigate the structure of the maximum orthogonal set of $\mu_{Q,\mathcal{D}} $ through the maximum tree mapping and based on this, the relevant issues of its spectral eigenmatrix were discussed.

Key words: maximum tree mapping, spectral eigenmatrix, spectral measure, spectral structure, self-similar measure

中图分类号: 

  • O174.2