[1] |
Chen S, Guo S, Xu Q. The existence and uniqueness of time-periodic solutions to the non-isothermal model for compressible nematic liquid crystals in a periodic domain. Acta Math Sci, 2024, 44B(3): 947-972
|
[2] |
Chen S, Xu Q. Time-periodic solutions to the non-isothermal model for compressible nematic liquid crystals in $\mathbb{R}^3$. Commun Pure Appl Anal, 2024, 23: 1697-1729
|
[3] |
De Anna F, Liu C. Non-isothermal general Ericksen-Leslie system: derivation, analysis and thermodynamic consistency. Arch Ration Mech Anal, 2019, 2.1: 637-717
|
[4] |
Evans L C. Partial Differential Equations. Second Edition. Providence: American Mathematical Society, 2010
|
[5] |
Ericksen J L. Conservation laws for liquid crystals. Trans Soc Rheol, 1961, 5: 23-34
|
[6] |
Fan J, Li F, Nakamura G. Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J Math Phys, 2018, 59: 031503
|
[7] |
Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press, 2004
|
[8] |
Guo B, Xi X, Xie B. Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals. J Differential Equations, 2017, 2.2: 1413-1460
|
[9] |
Hieber M, Prüss J. Thermodynamical consistent modeling and analysis of nematic liquid crystal flows. Mathematical Fluid Dynamics Present and Future, 2016 (3): 433-459
|
[10] |
Hieber M, Prüss J. Dynamics of the Ericksen-Leslie equations with general Leslie stress II: The compressible isotropic case. Arch Ration Mech Anal, 2019, 2.3: 1441-1468
|
[11] |
Huang X, Li J, Xin Z. Serrin-type criterion for the three-dimensional viscous compressible flows. SIAM J Math Anal, 2011, 43(4): 1872-1886
|
[12] |
Huang X, Wang Y. A Serrin criterion for compressible nematic liquid crystal flows. Math Methods Appl Sci, 2013, 36: 1363-1375
|
[13] |
Huang T, Wang C, Wen H. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 2.2: 2222-2265
|
[14] |
Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 2.4: 285-311
|
[15] |
Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28: 265-283
|
[16] |
Li J, Tao Q. Global small solutions to heat conductive compressible nematic liquid crystal system: smallness on a scaling invariant quantity. Commun Math Sci, 2023, 21: 1455-1486
|
[17] |
Liu L, Liu X. A blow-up criterion for strong solutions to the compressible liquid crystals system. Chinese Journal of Contemporary Mathematics, 2011, 32: 211
|
[18] |
Liu J, Wang X, Qin Y. A blow-up criterion for the compressible nematic liquid crystal flows in three dimensions. Math Methods Appl Sci, 2024, 47: 2205-2225
|
[19] |
Liu S, Zhao X, Chen Y. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete Contin Dyn Syst, 2020, 25: 4515-4533
|
[20] |
Liu Y. Global regularity to the 2D non-isothermal inhomogeneous nematic liquid crystal flows. Appl Anal, 2022, 1.1(7): 2686-2706
|
[21] |
Liu Y, Zhong X. Global well-posedness to the 3D Cauchy problem of compressible non-isothermal nematic liquid crystal flows with vacuum. Nonlinear Anal Real World Appl, 2021, 58: 103219
|
[22] |
Liu Y, Zhong X. Global well-posedness and large time behavior for compressible non-isothermal nematic liquid crystal flows with vacuum at infinity. arXiv: 2108.09710
|
[23] |
Nirenberg L. On elliptic partial differential equations. Ann Sc Norm Super Pisa, 1959, 13(2): 115-162
|
[24] |
Zhong X. Singularity formation to the two-dimensional compressible non-isothermal nematic liquid crystal flows in a bounded domain. J Differential Equations, 2019, 2.7(6): 3797-3826
|
[25] |
Zhong X. $L^\infty$ continuation principle to the compressible non-isothermal nematic liquid crystal flows with zero heat conduction and vacuum. Calc Var Partial Differential Equations, 2022, 61: Article 174
|