| [1] | Zheng X, Wang H. Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems. Applicable Analysis, 2022, 1.1(6): 1848-1870 | | [2] | Mukherjee M, Mondal B. An integer-order SIS epidemic model having variable population and fear effect: Comparing the stability with fractional order. Journal of the Egyptian Mathematical Society, 2022, 30(1): 1-23 | | [3] | Chakraverty S, Jena R M, Jena S K. Computational Fractional Dynamical Systems:Fractional Differential Equations and Applications. New York: John Wiley and Sons Inc, 2022 | | [4] | Pandey P, Das S, Craciun E M, et al. Two-dimensional nonlinear time fractional reaction-diffusion equation in application to sub-diffusion process of the multicomponent fluid in porous media. Meccanica, 2021, 56(1): 99-115 | | [5] | Acioli P S, Xavier F A, Moreira D M. Mathematical model using fractional derivatives applied to the dispersion of pollutants in the planetary boundary layer. Boundary-Layer Meteorology, 2019, 1.0(2): 285-304 | | [6] | 徐斐, 张勇. 分数阶 Burgers 方程时间周期弱解的唯一性与渐近稳定性. 数学物理学报, 2023, 43A(6): 1710-1722 | | [6] | Xu F, Zhang Y. Uniqueness and asymptotic stability of time-periodic solutions for the fractional Burgers equation. Acta Math Sci, 2023, 43A(6): 1710-1722 | | [7] | 李仁华, 王征平. 含强制位势的分数阶薛定谔泊松方程的正规化解. 数学物理学报, 2023, 43A(6): 1723-1730 | | [7] | Li R H, Wang Z P. Normalized solution of fractional Schr?dinger-Poisson equations with coercive potential. Acta Math Sci, 2023, 43A(6): 1723-1730 | | [8] | Jannelli A. A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow. Mathematics and Computers in Simulation, 2024, 2.5(20): 382-398 | | [9] | Li D, Sun W, Wu C. A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer Math Theor Meth Appl, 2021, 14(2): 355-376 | | [10] | Yu B, Li Y, Liu J. A Positivity-Preserving and robust fast solver for Time-Fractional Convection-Diffusion problems. Journal of Scientific Computing, 2024, 98(3): 1-26 | | [11] | Zheng Z Y, Wang Y M. Fast High-Order compact finite difference methods based on the averaged L1 formula for a Time-Fractional Mobile-Immobile diffusion problem. Journal of Scientific Computing, 2024, 99(2): 1-35 | | [12] | Hu J, Alikhanov A, Efendiev Y, et al. Partially explicit time discretization for time fractional diffusion equation. Fractional Calculus and Applied Analysis, 2022, 25(5): 1908-1924 | | [13] | Qiao L, Guo J, Qiu W. Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type. Computers and Mathematics with Applications, 2022, 1.3(7): 89-104 | | [14] | Yin B, Liu Y, Li H, et al. A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations. Applied Numerical Mathematics, 2021, 1.5(4): 56-82 | | [15] | Liao H L, McLean W, Zhang J. A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem. Communications in Computational Physics, 2021, 30(2): 567-601 | | [16] | Yuste S B, Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM Journal on Numerical Analysis, 2005, 42(5): 1862-1874 | | [17] | Fan E, Wang J, Liu Y, et al. Numerical simulations based on shifted second-order difference/finite element algorithms for the time fractional Maxwell's system. Engineering with Computers, 2022, 38(Suppl 1): 191-205 | | [18] | Dehghan M, Abbaszadeh M. An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations. Applied Numerical Mathematics, 2018, 1.1(12): 190-206 | | [19] | Liao H, McLean W, Zhang J. A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM Journal on Numerical Analysis, 2019, 57(1): 218-237 | | [20] | Fang Z, Zhao J, Li H, et al. A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model. Numerical Algorithms, 2023, 93(2): 863-898 | | [21] | Lin J, Bai J, Reutskiy S, et al. A novel RBF-based meshless method for solving time-fractional transport equations in 2D and 3D arbitrary domains. Engineering with Computers, 2023, 39(3): 1905-1922 | | [22] | Li M, Shi D, Pei L. Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation. Applied Numerical Mathematics, 2020, 1.1: 141-160 | | [23] | Liao H, Li D, Zhang J. Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM Journal on Numerical Analysis, 2018, 56(2): 1112-1133 |
|