数学物理学报

• 论文 • 上一篇    下一篇

一种有效的新预条件方法

李继成   

  1. 西安交通大学理学院 西安 710049
  • 收稿日期:2005-11-05 修回日期:2007-10-08 出版日期:2008-02-25 发布日期:2008-02-25
  • 通讯作者: 李继成
  • 基金资助:
    陕西省自然科学研究基金(2007A16)资助

A New Effective Preconditioned Method

Li Jicheng   

  1. School of Mathematics, Xi'an Jiaotong University, Xi'an 710049
  • Received:2005-11-05 Revised:2007-10-08 Online:2008-02-25 Published:2008-02-25
  • Contact: Li Jicheng

摘要: 该文首先提出一种有效的新预条件方法,并讨论了这种新预条件的几个重要性质;其次,证明了对于不可约严格对角占优的 Z -矩阵,新的预条件方法可以加速Jacobi迭代和Gauss-Seidel迭代法的收敛速度,并对相应迭代矩阵的谱半径做了比较,推广了已有的相关结论.文中的数值例子说明了该文提出的新预条件方法是有效的.

关键词: 谱半径, 预条件, 严格对角占优, Z -矩阵

Abstract: The paper presents a new effective preconditioned method and discusses some important properties of the new preconditioned method, and then, shows that the new preconditioned method can accelerate the convergence of Jacobi and Gauss-Seidel iterations for strictly diagonally dominant irreducible Z-matrices. Some comparison
theorems proved in the paper generalized some known results. Some numerical examples illustrate its validity.

Key words: Spectral radius, Preconditioned method, Strictly diagonally dominant, Z-matrix

中图分类号: 

  • 65F10