数学物理学报 ›› 2005, Vol. 25 ›› Issue (3): 393-403.

• 论文 • 上一篇    下一篇

一类非线性奇异微分方程正解的存在性定理

赵增勤   

  1. 曲阜师范大学数学科学学院
  • 出版日期:2005-07-24 发布日期:2005-07-24
  • 基金资助:

    国家自然科学基金(10471075)、山东省自然科学基金(Y2001A03)、山东省优秀中青年科学家科研奖励

On Existence Theorems of Positive Solutions for Nonlinear Singular Differential Equations

 DIAO Ceng-Qi   

  • Online:2005-07-24 Published:2005-07-24
  • Supported by:

    国家自然科学基金(10471075)、山东省自然科学基金(Y2001A03)、山东省优秀中青年科学家科研奖励

摘要:

设(i) f(t,u): (0,1)×(0,+∞)→[0,+∞)连续,关于u 单调增加; (ii) 存在函数g:[1,+∞)→(0,+∞),g(b)<b且g(b)b+2在(1,+∞)上可积,使得对任何(t,u)∈(0,1)×(0,∞)有f(t,bu)≤g(b )f(t,u).则奇异边值问题{u″(t)+f(t,u(t))=0, 0<t<1,au(0)-βu′(0)=0,γu(1)+δu′(1)=0)有C\[0,1\]正解的充分必要条件为0<∫\+1\-0G(s,s)f(s,1)ds<∞, 有C^1[0,1]正解的充分必要条件为0<∫^1_0f(s,G(s,s))ds<∞,也得到正解的唯一性及其迭代方法. 其中α,β,δ,γ≥0,αγ+αδ+βγ>0,G(t,s)是相应问题的Green函数。

关键词: 奇异边值问题,正解,充分必要条件

Abstract:

Suppose (i) f(t,u):(0,1)×(0,+∞)→[0,+∞) is continuous and is increasing on u; (ii) there exists a function g:[1,+∞)→ (0,+∞),g(b)<b and g(b)b^2 is  integrable on (1,+∞) such that f(t,b u)≤g(b)f(t,u),(t,u)∈(0,1)×(0,∞).Consider the singular problem{u″(t)+f(t,u(t))=0, 0<t<1,αu(0)-βu′(0)=0,γu(1)+δu′(1)=0.)(*)Then a necessary and sufficient condition for the equation (*) havingC[0,1] positive solutions is that 0<∫^1_0G(s,s)f(s,1)ds<∞, a necessary and sufficient condition for the equation (*) having C^1[0,1]  positive solutions  is that 0<∫^1_0f(s,G(s,s))ds<∞, and obtain the uniqueness, iterativ e method of the positive solutions. Where α,β,δ,γ≥0, αγ+αδ+δγ>0,G(t,s) is the Green function of the  problem (*). 

Key words: Singular boundary value problem, Positive solution, Necessary and sufficient condition.