Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (1): 135-144.
• Articles • Previous Articles
ZHANG Zong-Lao
Online:
Published:
Abstract:
设M是一个度量g的完备非紧非正曲率单连通黎曼流形,k是它的数曲率,K是M上的光滑函数.作者给出了M上以K作为数曲率且共形于g的度量的存在性条件,并给出了方程△u-hu+fu^p=0的一些正解存在性结果.
Key words: 完备流形;数曲率;共形度量;偏微分方程
CLC Number:
ZHANG Zong-Lao. CH上的方程△u-hu+fu^p=0与黎曼度量的共形形变[J].Acta mathematica scientia,Series A, 2002, 22(1): 135-144.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://actams.apm.ac.cn/sxwlxbA/EN/
http://actams.apm.ac.cn/sxwlxbA/EN/Y2002/V22/I1/135
[1] AvilesP,McOwenR.Conformaldeformationsofcompletemanifoldswithnegativecurvature.JDiffGeom,1985,21:269-281 [2] AubinT.Nonlinearanalysisonmanifolds,MongeAmpèreequations.New York:SpringerVerlag,1982 [3] JinZR.Prescribingscalarcurvaturesontheconformalclassesofcompletemetricswithnegativecurvature.TransAmerMathSoc,1993,340:785-810 [4] KazdanJ.PrescribingthecurvatureofaRiemannianmanifold.NSFCBMSRegionalconferencelecturenotes57,1985 [5] NiW M.Ontheellipticequation△狌+犓(狓)狌(狀+2)/(狀-2)=0,itsgeneralizations,andapplicationsingeometry.IndianaUnivMathJ,1982,31:495-529 [6] NiW M.Ontheellipticequation△狌+犓(狓)e2狌=0andconformalmetricswithprescribedGaussiancurvatures.InventMath1982,66:343-352 [7] AvilesP,McOwen R.ConformaldeformationtoconstantnegativescalarcurvatureonnoncompactRiemannianmanifolds.JDiffGeom,1988,27:225-239 [8] LiMa.ConformaldeformationsonanoncompactRiemannianmanifold.MathAnn,1993,295:75-80 [9] LiP,Tam LF,YangDG.Ontheellipticequation△狌+犽狌-犓狌狆=0oncompleteRiemanianmanifoldsandtheirgeometricapplications.TransAmerMathSoc,1998,350:1045-1078 [10] GilbargD,TrudingerNS.Ellipticpartialdifferentialequationsofsecondorder.2nded.Berlin:SpringerVerlag,1983 [11] GreeneR,Wu H.Functiontheoryon manifoldswhichpossessapole.Lecture Notesin Math,699.Berlin:SpringerVerlag,1979 [12] CheegerJ,EbinD.ComparisontheoreminRiemanniangeometry.Amsterdam:NorthHollandpublishingcompany,1975 [13] DieudonnéJ.Foundationsofmodernanalysis.NewYork:AcademicPress,1960.EnlargedandCorrectededition,1969 [14] BishopR,CrittendenR.Geometryofmanifolds.New York:AcademicPress,1964
Cited