Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (3): 316-322.
• Articles • Previous Articles Next Articles
HUANG Hai-Xiang
Online:
Published:
Supported by:
国家教委留学回国人员科研启动基金资助项目
Abstract:
文章通过对空间变量的有限差分方法离散了具有周期边值的BurgersGinzburgLandau方程组.研究了这个离散方程组初值问题解的适定性.证明了当差分网格足够大时离散方程组存在吸引子,并得到了吸引子的Hausdorff维数和分形维数的上界估计.这个上界不会随着网格的加细而无限增大,因此数值分析离散的有限维系统的吸引子可以近似探讨原无限维系统的吸引子.
Key words: 离散的BurgersGinzburgLandau方程组;吸引子;Hausdorff维数和分形维数
CLC Number:
HUANG Hai-Xiang. 离散的Burgers-Ginzburg-Landau方程组的吸引子[J].Acta mathematica scientia,Series A, 2002, 22(3): 316-322.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://actams.apm.ac.cn/sxwlxbA/EN/
http://actams.apm.ac.cn/sxwlxbA/EN/Y2002/V22/I3/316
[1] LevermoreCV,OliverM.ThecomplexGinzburgLandauequationasamodelproblem,indynamicalsystemsand probabilisticmethodsinpartialdifferentialequations.LecturesinApplied Mathematics,1996,31:141-189 [2] MielkeA,SchneiderG G.DerivationandjustificationofcomplexGinzburLandauequationasamodulationequa tion,indynamicalsystemsandprobabilisticmethodsinpartialdifferentialequations.Lecturesin Applied Mathe matics,1996,31:191-216 [3] VanHartenA.OnthevalidityoftheGinzburgLandauequation.JNonlinearSci,1991,1:397-422 [4] VanHartenA.Modulatedmodulationequations.ProceedingsoftheIUTAM/ISIMMSymposiumonStructureand DynamicsofNonlinearWavesinFluids,(Hannover)1994.117-130 [5] 萨马尔斯基A A,安德烈耶夫B.椭圆型方程差分方法.武汉大学计算数学教研室译,科学出版社,1984 [6] Temam R.Infinitedimensionaldynamicalsystemsinmechanicsandphysics.Berlin:Springer,1988
Cited