Acta mathematica scientia,Series A ›› 2002, Vol. 22 ›› Issue (3): 413-420.
• Articles • Previous Articles Next Articles
HUI Zhong-Li, JIN Meng-Zhong
Online:
Published:
Supported by:
山东省自然科学基金(Y2000A06)和云南省自然科学基金(2000A0020M)
Abstract:
通过建立Banach空间二阶非线性脉冲微分积分方程周期边值问题新的比较定理,给出了其最大解和最小解的存在性.
Key words: 单调迭代技巧;周期边值问题;脉冲微分积分方程;锥
CLC Number:
HUI Zhong-Li, JIN Meng-Zhong. Banach空间中二阶脉冲积分方程周期边值问题的注记[J].Acta mathematica scientia,Series A, 2002, 22(3): 413-420.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://actams.apm.ac.cn/sxwlxbA/EN/
http://actams.apm.ac.cn/sxwlxbA/EN/Y2002/V22/I3/413
[1] GuoD,SunJ.ThetheoryofordinarydifferentialequationsinBanachspaces.Advin Math,1994,23:492-504 [2] ErbeL H,GuoD.Periodicboundaryvalueproblemsforsecondorderintegrodifferentialequationsofmixedtype.ApplAnal,1992,46:249-258 [3] WeiZ.PeriodicboundaryvalueproblemsforsecondorderimpulsiveintegrodifferentialequationsofmixedtypeinBanachspaces.JMathAnalAppl,1995,195:214-229 [4] GuoD,Lakshmikantham V.Nonlinearproblemsinabstractcones.New York:AcademicPress,1988 [5] GuoD.ImpulsiveintegralequationsinBanachspaceandapplications.JApplMathStochasticAnal,192,5(2):111-122 [6] DuY.FixedpointsofincreasingoperatorsinorderedBanachspacesandapplication.ApplAnal,1990,38:1-20
Cited