Acta mathematica scientia,Series A ›› 2005, Vol. 25 ›› Issue (3): 381-385.
• Articles • Previous Articles Next Articles
ZHOU Zhou-An, SUO Biao, LIU Wen-Biao
Online:
2005-07-24
Published:
2005-07-24
Supported by:
国家自然科学基金(10373003)、国家留学基金和北京师范大学青年科学基金资助
ZHOU Zhou-An, SUO Biao, LIU Wen-Biao. The Generalized Uncertainty Relation and the Entropy of Reissner nordstrom de Sitter Spacetime[J].Acta mathematica scientia,Series A, 2005, 25(3): 381-385.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]Bekenstein J D. Black hole and entropy. Phys Rev, 1973, 7(8): 2333-2346 [2]Hawking S W. Particle creation by black holes. Commun Math Phys, 1975, 43(3): 199-220 [3]G′t Hooft. On the quantum structure of a black hole. Nuclear Physics, 1 985, 256B: 727-745 [4]Ghosh A, Mitra P. Entropy in dilatonic black hole background. Phys Rev Le tt, 1994, 73(19): 2521-2523 [5]Lee M H, Kim J K. Entropy of a quantum field in rotating black hole. Phys Rev, 1996, 54D(6): 3904-3914 [6]Cai R G, Zhu L B. Entropy of scalar fields and its duality invariance in threedimensional spacetimes. Phys Lett, 1996, 219A(3-4): 191-1 98 [7]Lee H, Kim S W, Kim W T. Nonvanishing entropy of extremal charged black h oles. Phys Rev, 1996, 54D(10): 6559-6562 [8]Ho J, Kim W T, Park Y J. Entropy in the KerrNewman black hole. C lass Quantum Grav, 1997, 14(9): 2617-2626 [9]刘文虎,赵峥。非热平衡Schwarzz schidede Sitter黑洞的熵。数学物理学报,2 003,23A(2):169-174 [10]Bombelli L, Koul R K, Lee J, et al. Quantum source of entrop y for black holes. Phys Rev, 1986, 34D(2): 373-383 [11]Srednicki M. Entropy and area. Phys Rev Lett, 1993, 71(5): 666-669 [12]曾谨言,裴寿镛. 量子力学新进展(第一辑). 北京:北京大学出版社,2000 [13]罗智坚,朱建阳. Schwarzschild黑洞背景下Dirac场的熵. 物理学报,1999, 48(3): 395-401 [14]刘文彪,朱建阳,赵峥. Nernst定理与RN黑洞Dirac场的熵. 物理学报,2000, 49(3): 581-585 [15]Liu Wenbiao, Zhao Zheng. Entropy of the Dirac field in a KerrNewman bl ack hole. Phys Rev, 2000, 61D(6): 63-69 [16]Li X, Zhao Z. Entropy of Vaidyade Sitter spacetime. Chin Phys L ett, 2001, 18(3): 463-465 [17]Liu W B, Zhao Z. An improved thin film brickwall model of black hole entropy. Chin Phys Lett, 2001, 18(2): 310-312 [18]Li Xiang. Black hole entropy without brick walls. Physics Letter, 2002, 540B(1-2): 9-13 [19]赵峥,刘辽. 一般稳态时空视界的确定. 物理学报,1991, 40(10): 1564-1567 [20]赵峥. 黑洞温度、熵变化率和时间尺度的压缩. 北京师范大学学报(自然科学版) ,1995, 31(4): 476-480 [21]Kempf A, Mangano G, Mann R B. Hilbert space representation of the minimal length uncertainty relation. Phys Rev, 1995, 52D(2): 1108-1118 [22]Chang L N, Minic D, Okamura N, et al. The effect of the minimal length u ncertainty relation on the density of states and cosmological constant. Phys Rev , 2002, 65D(12): 125-153 |
[1] | Wang Yankai, Peng Xingchun. Time-Consistent Risk Control and Investment Strategies With Transaction Costs [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1400-1414. |
[2] | Zou Tianfang,Zhao Caidi. Statistical Solutions and Kolmogorov Entropy for First-Order Lattice Systems in Weighted Spaces [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1559-1574. |
[3] | Jian Mangmang, Zheng Supei, Feng Jianhu, Zhai Mengqing. Well-Balanced Preserving of Entropy Stable Schemes for Shallow Water Equations [J]. Acta mathematica scientia,Series A, 2023, 43(2): 491-504. |
[4] | Xiao Ye,Yiming Ding. On Testing Pseudo Random Generators Via Statistical Tests Based on the Poissonian Pair Correlations [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1482-1495. |
[5] | Supei Zheng,Xia Xu,Jianhu Feng,Dou Jia. High Order Sign Preserving Entropy Stable Schemes [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1296-1310. |
[6] | Xingqian Ling,Weiguo Zhang. Periodic Wave Solutions, Solitary Wave Solutions and Their Relationship for Generalized Symmetric Regularized Long Wave Equation with Two Nonlinear Terms [J]. Acta mathematica scientia,Series A, 2021, 41(3): 603-628. |
[7] | Lijun Pan,Xinli Han,Tong Li. The Generalized Riemann Problem for Chromatography Equations with Delta Shock Wave [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1300-1313. |
[8] | Huo Tang,Shuhai Li,Xiaomeng Niu,Lina Ma. Majorization Problems for the Classes of Analytic Functions of Complex Order on the Domains of Lemniscate of Bernoulli [J]. Acta mathematica scientia,Series A, 2019, 39(1): 156-164. |
[9] | Li Bang, Yu Jinghu. Comparison of Inequality Under Incomplete Information and Based on Schur-Convex Function [J]. Acta mathematica scientia,Series A, 2018, 38(2): 334-349. |
[10] | Li Huahui, Shao Zhiqiang. Vanishing Pressure Limit of Riemann Solutions to the Aw-Rascle Model for Generalized Chaplygin Gas [J]. Acta mathematica scientia,Series A, 2017, 37(5): 917-930. |
[11] | Wu Xinxing, Wang Jianjun. Some Remarks on P-Minimal Dynamical Systems [J]. Acta mathematica scientia,Series A, 2016, 36(5): 879-885. |
[12] | Li Yan, Zhang Xiaofei, Yi Ming, Liu Yanyan. Link Prediction for the Gene Regulatory Network [J]. Acta mathematica scientia,Series A, 2015, 35(5): 1018-1024. |
[13] | Dai Yuxia. Upper Local Entropy of Measures and Like-Bowen Entropy of Sets [J]. Acta mathematica scientia,Series A, 2015, 35(3): 587-591. |
[14] | Ma Lei, Zeng Chunna. Remark on Isoperimetric Inequalities in the Wullf Case [J]. Acta mathematica scientia,Series A, 2015, 35(2): 306-311. |
[15] | SHAO Zhi-Qiang. The Riemann Problem with Delta Initial Data for the Aw-Rascle Traffic Model with Chaplygin Pressure [J]. Acta mathematica scientia,Series A, 2014, 34(6): 1353-1371. |
|