Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (1): 18-30.

• Articles • Previous Articles     Next Articles

On Absolute Continuity of Periodic Elliptic Operators with Singularity

ZHAO Pei-Hao, LIU Wu-Long   

  1. Department of Mathematics, Lanzhou University, Lanzhou 730000
  • Received:2008-03-11 Revised:2009-05-09 Online:2010-01-01 Published:2010-01-01
  • Supported by:

    国家自然科学基金(10771089)、甘肃省自然科学基金(0710RJZA021)资助.

Abstract:

In this paper we consider the spectral properties of periodic elliptic operator ∑dj,l=1Djw(x)ajlDl+V(x) in Rd, d ≥  3, where A=(ajl) is a d×d positive definite matrix with real constant entries, V(x)  and w(x) are periodic scalar function with respect to the same lattice, and w({x) is positive. Using a new uniform Sobolev inequalities on the d-torus   established in [22], we prove that the spectrum of the operator is purely absolutely continuous if Lloc2pd/d+2p(Rd) and w ∈ ∧1+αp, ∞(Td)∩L(Td) for some α>0, p≥ d, or V ∈ L loc2d/3(Rd), ∈ C1(Td), or  Llocd/2(Rd),  L2, locd/2(Td).

Key words: Elliptic operator, Periodic potential, Absolute continuous spectrum, Uniform Sobolev inequalities

CLC Number: 

  • 35J10
Trendmd