Acta mathematica scientia,Series A ›› 2010, Vol. 30 ›› Issue (6): 1485-1494.

• Articles • Previous Articles     Next Articles

Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion

 CHEN Chuan-Zhong1, HAN Xin-Fang2, MA Li3   

  1. 1.Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158;2.School of Mathematical Science and Computing
    Technology, Central South University, Changsha 410075|Institute of Applied Mathematics, AMSS, CAS, Beijing 100190;3.Department of Mathematics and Statistics, Concordia University, Montreal H4B 1R6, Canada
  • Received:2008-11-30 Revised:2009-09-15 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

Abstract:

Let $\textbf{B=}(\Omega,{{\cal F}},({{\cal F}}_{t})_{t\geq0},(B_{t})_{t\geq0},(P_{x})_{x\inR^{d}})$ be the classical Brownian motion on $L^{2}(R^{d},m)$, which is associated with a symmetric Dirichlet form $({{\cal E}},{{\cal D}}({{\cal E}}))$. For $u\in{{\cal D}}({{\cal E}})$,  $\tilde{u}(B_{t})-\tilde{u}(B_{0})=M^{u}_{t}+N^{u}_{t}$ is Fukushima decomposition, where $\tilde{u}$ is a quasi-continuous version of $u$, $M^{u}_{t}$ the martingale part and $N^{u}_{t}$  the zero energy part. In this paper, the authors first study transformed process $\widehat{B}$ of B, which is determined by the supermartingale $L^{-u}_{t}:=e^{M^{-u}_{t}-\frac{1}{2}\langle M^{-u}\rangle_{t}}$, they get some properties of its transition semigroup; Then, they study the asymptotic properties of $N^{u}_{t}$, they get that if $L^{-u}_{t}$  is a martingale, $u$ is bounded and
$\nabla u\in K_{d-1}$, $||E_{.}(e^{M^{-u}_{t}})||_{q}<\infty$, then for every $x\in R^{d}$, \begin{eqnarray*} \lim_{t\rightarrow \infty}\frac{1}{t} \log E_{x}(e^{N^{u}_{t}}) =-\inf_{{f\in {{\cal D}}({\cal E})_{b}}\atop{\| f \| _{L^{2}(R^{d},m)}=1}}({{\cal E}}(f,f)+{{\cal E}}(f^{2},u)), \end{eqnarray*} where
 ${{\cal D}}({{\cal E}})_{b}={{\cal D}}({{\cal E}})\cap L^{\infty}(R^{d},m)$.

Key words: Dirichlet form, Fukushima decomposition, Brownian motion, Transition density function Asymptotic property

CLC Number: 

  • 31C25
Trendmd