Acta mathematica scientia,Series A ›› 2011, Vol. 31 ›› Issue (5): 1403-1415.
• Articles • Previous Articles Next Articles
SHI Hong-Bo1,2, LI Wan-Tong2, LIN Guo2
Received:
2009-09-23
Revised:
2010-08-30
Online:
2011-10-25
Published:
2011-10-25
Supported by:
国家自然科学基金(10871085, 10801065)和甘肃省自然科学基金(096RJZA051)资助
CLC Number:
SHI Hong-Bo, LI Wan-Tong, LIN Guo. Qualitative Analysis of a Modified Leslie-Gower Predator-Prey System with Diffusion[J].Acta mathematica scientia,Series A, 2011, 31(5): 1403-1415.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Lotka A J. Elements of Physical Biology. Baltimore: Williams and Wilkins Company, 1925 [2] Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature, 1926, 118(2972): 558--560 [3] Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation. Mem Entomol Sec Can, 1965, 45: 1--60 [4] Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J Animal Ecol, 1975, 44(1): 331--340 [5] DeAngelis D L, Goldstein R A, O'Neill R V. A model for trophic interaction. Ecology, 1975, 56(4): 881--892 [6] Wollkind J D, Logan J A. Temperature-dependent predator-prey mite ecosystem on apple tree foliage. J Math Biol, 1978, 6(3): 265--283 [7] Wollkind J D, Collings J B, Logan J A. Metastability in a temperature-dependent model system for predator-prey mite outbreak [8] May R. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press, 1973 [9] Hsu S B, Huang T W. Global stability for a class of predator-prey systems. SIAM J Appl Math, 1995, 55(3): 763--783 [10] Li Y L, Xiao D M. Bifurcations of a predator-prey system of Holling and Leslie types. Chaos, Solitons and Fractals, 2007, 34(2): 606--620 [11] Liang Z P, Pan H W. Qualitative analysis of a ratio-dependent Holling-Tanner model. J Math Anal Appl, 2007, 334(2): 954--964 [12] Lu Z Q, Liu X. Analysis of a predator-prey model with modified Holling-Tanner functional response and time delay. Nonlinear Anal RWA, 2008, 9(2): 641--650 [13] Song Y L, Yuan S L, Zhang J M. Bifurcation analysis in the delayed Leslie-Gower predator-prey system. Appl Math Modelling, 2009, 33(11): 4049--4061 [14] Aziz-Alaoui M A, Okiye M D. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl Math Lett, 2003, 16(7): 1069--1075 [15] Nindjin A F, Aziz-Alaoui M A, Cadivel M. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal RWA, 2006, 7(5): 1104--1118 [16] Nie L, Teng Z, Hu L, Peng J. Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state [17] Ruan S G. Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling. IMA J Appl Math, 1998, [18] Ruan S G. Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis. Natur Resource Modeling, 1998, 11(2): 131--142 [19] Malchow H, Petrovskii S V, Venturino E. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. Boca Raton: Chapman & Hall/CRC, 2008 [20] Ruan S G, Wu J H. Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts. Spatial Ecology. Boca Raton: Chapman & Hall/CRC, 2009 [21] Fagan W F, Bishop J. Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St Helens. Amer Nat, 2000, 155(2): 238--251 [22] Owen M R, Lewis M A. How predation can slow, stop or reverse a prey invasion. Bull Math Biol, 2001, 63(4): 655--684 [23] Chen B, Wang M X. Qualitative analysis for a diffusive predator-prey model. Computer Math Appl, 2008, 55(3): 339--355 [24] Peng R, Wang M X. On multiplicity and stability of positive solutions of a diffusive prey-predator model. J Math Anal Appl, 2006, 316(1): 256--268 [25] Wang M X, Wang X B. Existence, uniqueness and stability of positive steady states to a prey-predator diffusion system. Sci China (Ser A), 2009, 52(5): 1031--1041 [26] Ryu K, Ahn I. Positive solutions for ratio-dependent predator-prey interaction systems. J Differential Equations, 2005, 218(1): 117--135 [27] Ko W, Ryu K. Coexistence states of a predator-prey system with non-monotonic functional response. Nonlinear Anal RWA, 2007, 8(3): 769--786 [28] 陈滨, 王明新. 一类三种群捕食模型的正解. 数学物理学报, 2008, 28A(6): 1256--1266 [29] Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 349(6): 2443--2475 [30] Fan Y H, Li W T. Global asymptotic stability of a ratio-dependent predator-prey system with diffusion. J Comput Appl Math, 2006, 188(2): 205--227 [31] Ko W, Ryu K. Analysis of diffusive two-competing-prey and one-predator systems with Beddington-Deangelis functional response. [32] Nie H, Wu J H. Multiplicity and stability of a predator-prey model with non-monotonic conversion rate. Nonlinear Anal RWA, 2009, 10(1): 154--171 [33] Ryu K, Ahn I. Coexistence theorem of steady states for nonlinear self-cross-diffusion systems with competitive dynamics. J Math Anal Appl, 283(1): 46--65 [34] Wang M X, Wu Q. Positive solutions of a prey-predator model with predator saturation and competition. J Math Anal Appl, 2008, 345(2): 708--718 [35] Yamada Y. Stability of steady states for prey-predator diffusion equations with homogenenous Dirichlet conditions. SIAM J Math Anal, 1990, 21(2): 327--345 [36] Cano-Casanova S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical [37] Cano-Casanova S, L${\rm\acute{o}}$pez-G${\rm\acute{o}}$mez J. Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J Differential Equations, 2002, 178(1): 123--211 [38] Dancer E N. On the indices of fixed points of mappings in cones and applications. J Math Anal Appl, 1983, 91(1): 131--151 [39] Li L G. Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305(1): 143--166 [40] 王明新. 非线性抛物型方程. 北京: 科学出版社, 1997 [41] Ruan W, Feng W. On the fixed point index and multiple steady states of reaction-diffusion systems. Differential Integral Equations, 1975, 8(2): 371--391 [42] Pao C V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992 |
[1] | Ni Siyan, Zou Tianfang, Zhao Caidi. Pullback Attractors and Invariant Measures for Retarded Lattice Reaction-Diffusion Equations [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1128-1143. |
[2] | Lv Dongting. Globally Asymptotic Stability of 2-Species Reaction-Diffusion Systems of Spatially Inhomogeneous Models [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1171-1183. |
[3] | Zhu Peng, Chen Yanping, Xu Xianyu. BDF2-Type Finite Element Method for Time-Fractional Diffusion-Wave Equations on Nonuniform Grids [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1268-1290. |
[4] | Wu Wenbin, Ren Xue, Zhang Ran. Traveling Waves for a Discrete Diffusive Vaccination Model with Delay [J]. Acta mathematica scientia,Series A, 2025, 45(3): 858-874. |
[5] | LI Yazhi, Liu Lili, Tian Yanni. Optimal Control Strategy for the SVEITR Pulmonary Tuberculosis Transmission Model Considering Diffusion [J]. Acta mathematica scientia,Series A, 2025, 45(3): 934-945. |
[6] | Lv Xueqin, He Songyan, Wang Shiyu. Combining RKM with FDM for Time Fractional Convection-Diffusion Equations with Variable Coefficients [J]. Acta mathematica scientia,Series A, 2025, 45(1): 153-164. |
[7] | Liu Jia, Bao Xiongxiong. Asymptotic Stability of Pyramidal Traveling Front for Nonlocal Delayed Diffusion Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 44-53. |
[8] | Huo Huixia, Li Yongxiang. Existence of Positive Solutions for a Bending Elastic Beam Equation [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1476-1484. |
[9] | Wu Peng, Fang Cheng. Dynamical Analysis and Numerical Simulation of a Syphilis Epidemic Model with Heterogeneous Spatial Diffusion [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1352-1367. |
[10] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[11] | Yu Ting, Dong Ying. The Convergence Rate of the Fast Signal Diffusion Limit for a Three-Dimensional Keller-Segel-Stokes System [J]. Acta mathematica scientia,Series A, 2024, 44(4): 925-945. |
[12] | Guo Zhiyuan, Gao Yuan, Sun Jiacheng, Zhang Guowei. Positive Solutions of Nonlocal Beam Equations with Fully Nonlinear Terms [J]. Acta mathematica scientia,Series A, 2024, 44(3): 621-636. |
[13] | Wang Xuan, Yuan Haiyan. Attractors for the Nonclassical Diffusion Equation with Time-Dependent Memory Kernel [J]. Acta mathematica scientia,Series A, 2024, 44(2): 429-452. |
[14] | Li Yuanfei, Li Dandan, Shi Jincheng. Structural Stability of Temperature Dependent Double Diffusion Model on a Semi-infinite Cylinder [J]. Acta mathematica scientia,Series A, 2024, 44(1): 120-132. |
[15] | Wu Peng, He Zerong. Spatio-temporal Dynamics of HIV Infection Model with Periodic Antiviral Therapy and Nonlocal Infection [J]. Acta mathematica scientia,Series A, 2024, 44(1): 209-226. |
|