Acta mathematica scientia,Series A ›› 2013, Vol. 33 ›› Issue (1): 98-113.
• Articles • Previous Articles Next Articles
CHEN Da-Xue
Received:
2011-04-28
Revised:
2012-06-20
Online:
2013-02-25
Published:
2013-02-25
Supported by:
湖南省自然科学基金(11JJ3010)资助
CLC Number:
CHEN Da-Xue. Bounded Oscillation for Second-order Nonlinear Neutral Delay Dynamic Equations with Oscillating Coefficients[J].Acta mathematica scientia,Series A, 2013, 33(1): 98-113.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Chen D X. Oscillation of second-order Emden-Fowler neutral delay dynamic equations on time scales. Math Comput Modelling, 2010, 51: 1221--1229 [2] Chen D X. Oscillation and asymptotic behavior for nth-order nonlinear neutral delay dynamic equations on time scales. Acta Appl Math, 2010, 109: 703--719 [3] Chen D, Liu J. Oscillation theorems for second-order nonlinear neutral dynamic equations with distributed delay on time scales. J Systems Sci Math Sci, 2010, 30: 1--14 [4] Chen D X, Liu J C. Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales. Can Appl Math Q, 2008, 16: 19--43 [5] Karpuz B. Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations. Appl Math Comput, 2009, 215: 2174--2183 [6] Hassan T S. Oscillation of third-order nonlinear delay dynamic equations on time scales. Math Comput Modelling, 2009, 49: 1573--1586 [7] Hilger S. Ein Maβkettenkalk\"{u}l mit Anwendung auf Zentrumsmannigfaltigkeiten [D]. W\"{u}rzburg: Universitä}t W\"{u}rzburg, 1988 [8] Spedding V. Taming Nature's numbers. New Scientist, 2003, 179: 28--31 [9] Bohner M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhäuser, 2001 [10] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003 [11] Hardy G H, Littlewood J E, P\'{o}lya G. Inequalities (second ed). Cambridge: Cambridge University Press, 1988 [12] Agarwal R P, Bohner M, O'Regan D, Peterson A. Dynamic equations on time scales: a survey. J Comput Appl Math, 2002, 141: 1--26 [13] Erbe L, Hassan T S, Peterson A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl Math Comput, [14] Hassan T S. Oscillation criteria for half-linear dynamic equations on time scales. J Math Anal Appl, 2008, 345: 176--185 [15] Zafer A. On oscillation and nonoscillation of second-order dynamic equations. Appl Math Lett, 2009, 22: 136--141 [16] Ou L. Atkinson's super-linear oscillation theorem for matrix dynamic equations on a time scale. J Math Anal Appl, 2004, 299: 615--629 [17] Medico A D, Kong Q. Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain. [18] Bohner M, Saker S H. Oscillation criteria for perturbed nonlinear dynamic equations. Math Comput Modelling, 2004, 40: 249--260 [19] Do\v{s}l\'{y} O, Hilger S. A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales. J Comput Appl Math, 2002, 141: 147--158 [20] Zhang B G, Shanliang Z. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput Math Appl, 2005, 49: 599--609 [21] Sahiner Y. Oscillation of second-order delay differential equations on time scales. Nonlinear Anal, 2005, 63: 1073--1080 [22] Erbe L, Peterson A, Saker S H. Hille and Nehari type criteria for third-order dynamic equations. J Math Anal Appl, 2007, 329: 112--131 [23] Erbe L, Peterson A, Saker S H. Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales. J Comput Appl Math, 2005, 181: 92--102 [24] Agarwal R P, O'Regan D, Saker S H. Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J Math Anal Appl, 2004, 300: 203--217 [25] Saker S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J Comput Appl Math, 2006, 187: 123--141 [26] Wu H W, Zhuang R K, Mathsen R M. Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl Math Comput, 2006, 178: 321--331 [27] Saker S H, Agarwal R P, O'Regan D. Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. [28] Zhang S Y, Wang Q R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl Math Comput, 2010, 216: 2837--2848 [29] Saker S H, O'Regan D. New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. Commun Nonlinear Sci Numer Simul, 2011, 16: 423--434 [30] Erbe L H, Kong Q, Zhang B G. Oscillation Theory for Functional Differential Equations. New York: Marcel Dekker, 1995 [31] Adivar M, Raffoul Y. A note on "tability and periodicity in dynamic delay equations" (Comput Math Appl, 2009, 58: 264--273. Comput Math Appl, 2010, 59: 3351--3354 [32] Karpuz B. Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. [33] 李同兴, 韩振来, 张承慧, 孙一冰. 时间尺度上三阶Emden-Fowler动力方程的振动准则. 数学物理学报, 2012, 32: 222--232 [34] Liu Ailian, Wu Hongwu, Zhu Siming, Mathsen R M. Oscillation for nonautonomous neutral dynamic delay equations on time scales. Acta Math Sci (Ser B Engl Ed), 2006, 26: 99--106 |
|