Acta mathematica scientia,Series A ›› 2013, Vol. 33 ›› Issue (4): 735-745.
• Articles • Previous Articles Next Articles
SHI Dong-Yang1, YU Zhi-Yun2
Received:
2011-05-30
Revised:
2012-12-12
Online:
2013-08-25
Published:
2013-08-25
CLC Number:
SHI Dong-Yang, YU Zhi-Yun. Superclose and Superconvergence Analysis of a Low Order Nonconforming Mixed Finite Element Method for Stationary
Stokes Equations with Damping[J].Acta mathematica scientia,Series A, 2013, 33(4): 735-745.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Wahlbin L B. Superconvergence in Galerkin Finite Element Methods, Vol 1605. Berlin: Springer, 1995 [21] Lin Q, Tobiska L, Zhou A. Superconvergence and extrapolation of nonconforming low order elements applied to the |
[1] | Gong Simeng, Zhang Xueyao, Guo Zhenhua. The Existence of Global Strong Solution to the Compressible Axisymmetric Navier-Stokes Equations with Density-Dependent Viscosities [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1445-1475. |
[2] | Liao Yuankang. Nonlinear Stability of Viscous Shock Waves for One-dimensional Isentropic Compressible Navier-Stokes Equations with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1149-1169. |
[3] | Yaqi Wan,Xiaoli Chen. Regularity Criterion for 3D Incompressible Navier-Stokes Equations via the Pressure in Triebel-Lizorkin Spaces [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1473-1481. |
[4] | Jie Cao,Lan Huang,Keqin Su. The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1173-1185. |
[5] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[6] | Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 336-344. |
[7] | Jianhua Huang,Zaiyun Zhang,Yong Chen. The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1532-1544. |
[8] | ZHANG Zu-Jin. An Improved Regularity Criterion for the 3D Navier-Stokes Equations in Terms of Two Entries of the Velocity Gradient [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1327-1335. |
[9] | YANG Xin-Guang, WANG Hong-Jun, LI Jun-Tao. Uniform Attractors for the 2D Non-Autonomous Navier-Stokes Equation with Weak Damping [J]. Acta mathematica scientia,Series A, 2014, 34(4): 828-840. |
[10] | GAO Zhen-Sheng, JIANG Fei, WANG Wei-Wei. Semi-Strong Solutions to Hydrodynamic Flow of Liquid Crystals [J]. Acta mathematica scientia,Series A, 2014, 34(2): 367-377. |
[11] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[12] | DONG Jian-Wei, ZHANG You-Lin, WANG Yan-Ping. Analysis of the Stationary Quantum Navier-Stokes Equations in one Space Dimension [J]. Acta mathematica scientia,Series A, 2013, 33(4): 719-727. |
[13] | BIAN Dong-Fen, YUAN Bao-Quan. Regularity of Weak Solutions to the Generalized Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1601-1609. |
[14] | ZHAO Cai-De. H1-uniform Attractor for 2D Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1416-1430. |
[15] | YUAN Hong-Jun, WANG Shu. The Zero-Mach Limit of the Compressible Convection [J]. Acta mathematica scientia,Series A, 2011, 31(1): 53-63. |
|