Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (1): 143-155.
Previous Articles Next Articles
Received:
2017-12-05
Online:
2019-02-26
Published:
2019-03-12
Supported by:
CLC Number:
Ruijing Li. A General Maximum Principle for Forward-Backward Stochastic Control Systems of Mean-Field Type[J].Acta mathematica scientia,Series A, 2019, 39(1): 143-155.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Ansari Q H. Ekeland's variational principle and its extensions with applications//Almezel S, et al. Topics in Fixed Point Theory. Switzerland: Springer International Publishing, 2014: 65-100 |
2 |
Bensoussan A , Yam S C P , Zhang Z . Well-posedness of mean-field type forward-backward stochastic differential equations. Stoch Process Appl, 2015, 125: 3327- 3354
doi: 10.1016/j.spa.2015.04.006 |
3 |
Buckdahn R , Djehiche B , Li J . A general stochastic maximum principle for SDEs of mean-field type. Appl Math Optim, 2011, 64: 197- 216
doi: 10.1007/s00245-011-9136-y |
4 | Buckdahn R , Djehiche B , Li J , Peng S G . Mean-field backward stochastic differential equations. A limit approach. Ann Probab, 2009, 125: 1524- 1565 |
5 |
Buckdahn R , Li J , Peng S G . Mean-field backward stochastic differential equations and related partial differential equations. Stoch Process Appl, 2009, 119: 3133- 3154
doi: 10.1016/j.spa.2009.05.002 |
6 |
Gomes D A , Patrizi S . Weakly coupled mean-field game systems. Nonlinear Analysis, 2016, 144: 110- 138
doi: 10.1016/j.na.2016.05.017 |
7 |
Kohlmann M , Zhou X Y . Relationship between backward stochastic differential equations and stochastic controls:a linear-quadratic approach. SIAM J Control Optim, 2000, 38: 1392- 1407
doi: 10.1137/S036301299834973X |
8 |
Lasry J M , Lions P L . Mean field games. Japan J Math, 2007, 2: 229- 260
doi: 10.1007/s11537-007-0657-8 |
9 |
Li J . Stochastic maximum principle in the mean-field controls. Automatica, 2012, 48: 366- 373
doi: 10.1016/j.automatica.2011.11.006 |
10 |
Li J . Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integralPDEs. Stoch Process Appl, 2017
doi: 10.1016/j.spa.2017.10.011 |
11 |
Li R J , Liu B . A maximum principle for fully coupled stochastic control systems of mean-field type. J Math Anal Appl, 2014, 415: 902- 930
doi: 10.1016/j.jmaa.2014.02.008 |
12 |
Ma H P , Liu B . Maximum principle for partially observed risk-sensitive optimal control problems of meanfield type. Eur J Control, 2016, 32: 16- 23
doi: 10.1016/j.ejcon.2016.05.002 |
13 |
Meyer-Brandis T , Ãksendal B , Zhou X Y . A mean-field stochastic maximum principle via Malliavin calculus. Stochastics:An International Journal of Probab and Stoch Process, 2012, 84: 643- 666
doi: 10.1080/17442508.2011.651619 |
14 |
Ni Y H , Li X , Zhang J F . Mean-field stochastic linear-quadratic optimal control with Markov jump parameters. Systems Control Lett, 2016, 93: 69- 76
doi: 10.1016/j.sysconle.2016.04.002 |
15 |
Qi Q Y , Zhang H S . Necessary and sufficient solution to optimal control for linear continuous time meanfield system. IFAC PapersOnLine, 2017, 50: 1495- 1501
doi: 10.1016/j.ifacol.2017.08.298 |
16 |
Shen Y , Sui T K . The maximum principle for a jump-diffusion mean-field model and its application to the mean-variance problem. Nonlinear Analysis, 2013, 86: 58- 73
doi: 10.1016/j.na.2013.02.029 |
17 |
Wang G C , Xiao H , Xing G J . An optimal control problem for mean-field forward-backward stochastic differential equation with noisy observation. Automatica, 2017, 86: 104- 109
doi: 10.1016/j.automatica.2017.07.018 |
18 |
Wu Z . A general maximum principle for optimal control of forward-backward stochastic systems. Automatica, 2013, 49: 1473- 1480
doi: 10.1016/j.automatica.2013.02.005 |
19 | Yong J M , Zhou X Y . Stochastic Controls, Hamiltonian Systems and HJB Equations. New York: SpringerVerlag, 1999 |
[1] | Yang Junyuan, Zhang Chenlin, Yang Li. Study on Comprehensive Control Strategies of an Age Structured Influenza Model [J]. Acta mathematica scientia,Series A, 2024, 44(3): 804-814. |
[2] |
Lu Weiping,Liu Hanbing.
Sampled-Data Time Optimal Control for Heat Equation with Potential in |
[3] | Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation [J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701. |
[4] | Xiaoyong Cui,Can Zhang. Turnpike Properties of a Class of Optimal Control Problems with Exponential Weights [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1256-1264. |
[5] | Zhenjie Li,Lei Li. A Symmetry Result for Solutions of the Fractional Laplacian with Convex Nonlinearites [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1224-1234. |
[6] | Zhuhong Zhang. Four-Dimensional Shrinking Gradient Ricci Solitons with Half Positive Isotropy Curvature [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1011-1017. |
[7] | Zhang Chunguo, Liu Yubiao, Liu Weiwei. Boundary Optimal Control for the Timoshenko Beam [J]. Acta mathematica scientia,Series A, 2018, 38(3): 454-466. |
[8] | HUANG Qin, RUAN Qi-Hua. Elliptic Boundary Value Problems on Compact Manifolds [J]. Acta mathematica scientia,Series A, 2015, 35(1): 43-49. |
[9] | XU Jin-Ju. A Remark on the Convexity of Hypersurface with Prescribed Curvature Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1176-1180. |
[10] |
Wang Bing;Xu Xuewen.
Cauchy Problem for the Nonhomogeneous Hyperbolic Conservation Laws with the Degenerate Viscous Term [J]. Acta mathematica scientia,Series A, 2008, 28(1): 109-115. |
[11] | LUO Zhi-Hua, WANG Mian-Sen. Optimal Harvesting Control Problem for Linear Periodic Age dependent Population Dynamic System [J]. Acta mathematica scientia,Series A, 2005, 25(6): 905-912. |
[12] | DING Jun-Tang. Maximum |Principles for a Class of Semilinear Parabolic Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2004, 24(1): 63-70. |
|