Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (2): 297-306.
Previous Articles Next Articles
Xianglin Han1(),Weigang Wang2,Jiaqi Mo3
Received:
2017-10-31
Online:
2019-04-26
Published:
2019-05-05
Supported by:
CLC Number:
Xianglin Han,Weigang Wang,Jiaqi Mo. Generalized Solution to the Singular Perturbation Problem for a Class of Nonlinear Differential-Integral Time Delay Reaction Diffusion System[J].Acta mathematica scientia,Series A, 2019, 39(2): 297-306.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Baru L, Morosanu G. Singularly Perturbed Boundary-Value Problems. Basel: Birkhauser, 2007 |
2 | De Jager E M, Jiang Furu. The Theory of Singular Perturbation. Amsterdam: North-Holland Publishing Co, 1996 |
3 |
Tian Canrong , Zhu Peng . Existence and asymptotic behavior of solutions for quasilinear parabolic systems. Acta Appl Math, 2012, 121 (1): 157- 173
doi: 10.1007/s10440-012-9701-7 |
4 |
Samusenko P F . Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations. J Math Sci, 2013, 189 (5): 834- 847
doi: 10.1007/s10958-013-1223-y |
5 |
Kelloff R B , Kopteva N . A singularly perturbed semi-linear reaction-diffusion problem in a polygonal domain. J Differ Equations, 2010, 248 (1): 184- 208
doi: 10.1016/j.jde.2009.08.020 |
6 | Skrynnkov Y . Solving initial value problem by matching asymptotic expansions. SIAM J Appl Math, 2012, 72 (1): 405- 416 |
7 |
Martinez S , Wolanshi N . A singular perturbation problem for a quasi-linear operator satisfying the natural condition of Lieberman. SIAM Math Anal, 2009, 41 (1): 318- 359
doi: 10.1137/070703740 |
8 | Mo Jiaqi . Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China Ser A, 1989, 32 (11): 1306- 1315 |
9 |
Mo J Q . Approximate solution of homotopic mapping to solitary wave for generalized nonlinear KdV system. Chin Phys Lett, 2009, 26 (1): 010204
doi: 10.1088/0256-307X/26/1/010204 |
10 | Mo J Q , Lin W T . Generalized variation iteration Solution of an atmosphere-ocean oscillator model for global climate. J Sys Sci & Complexity, 2011, 24 (2): 271- 276 |
11 | Han X L , Wang W G , Mo J Q . Solution of singularly perturbed boundary value peoblem for nonlinear higher order elliptic partial differential equations with two parameters. Adv Math, 2015, 44 (6): 931- 938 |
12 |
Han X L , Lin W T , Du Z J , Mo J Q . Shock wave solution for a class of nonlocal nonlinear singularly oerturbed boundary value problems with turning point. Acta Math Appl Sinica, 2015, 31 (3): 701- 705
doi: 10.1007/s10255-015-0496-y |
13 | Han X L , Wang W G , Mo J Q . Solution of singularly perturbed boundary value problem for nonlinear higher order elliptic partial differential equations with two parameters. Adv Math, 2015, 44 (6): 931- 938 |
14 |
韩祥临, 赵振江, 汪维刚, 莫嘉琪. 分数阶广义扰动热波方程的泛函映射解. 高校应用数学学报, 2016, 21 (1): 101- 108
doi: 10.3969/j.issn.1000-4424.2016.01.012 |
Han X L , Zhou Z J , Wang W G , Mo J Q . The functional mapping solution for fractional generalized disturbed thermal wave equation. Appl Math J Chin Univ, 2016, 21 (1): 101- 108
doi: 10.3969/j.issn.1000-4424.2016.01.012 |
|
15 | 韩祥临, 石兰芳, 莫嘉琪. 双参数非线性非局部奇摄动问题的广义解. 数学进展, 2016, 45 (1): 95- 101 |
Han X L , Shi L F , Mo J Q . Generalized solution of nonlinear nonlocal singularly perturbed problems with two parameters. Adv Math, 2016, 45 (1): 95- 101 | |
16 | 韩祥临, 石兰芳, 许永红, 莫嘉琪. 分数阶双参数奇摄动非线性微分方程的渐近解. 应用数学学报, 2015, 38 (4): 721- 729 |
Han X L , Shi L F , Xu Y H , Mo J Q . Asymptotic solution for the fractional order singularly perturbed nonlinear differential equation with two parameters. Acta Math Appl Sinica, 2015, 38 (4): 721- 729 | |
17 | 韩祥临, 石兰芳, 莫嘉琪. 一类海-气振子模型的微扰解. 物理学报, 2014, 63 (6): 060205 |
Han X L , Shi L F , Mo J Q . Small perturbed solution for a class of the sea-air oscillator. Acta Phys Sinica, 2014, 63 (6): 060205 | |
18 | 韩祥临, 陈贤峰, 莫嘉琪. 一类量子等离子体类孤波的近似解析解. 物理学报, 2014, 63 (3): 030202 |
Han X L , Chen X F , Mo J Q . Approximate analytic solution of solitary-like waves in a class of quantum plasma. Acta Phys Sinica, 2014, 63 (3): 030202 |
|