Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (2): 307-315.
Previous Articles Next Articles
Ting Ji1,Lianggen Hu1,*(),Jing Zeng2
Received:
2017-10-12
Online:
2019-04-26
Published:
2019-05-05
Contact:
Lianggen Hu
E-mail:hulianggen@tom.com
Supported by:
CLC Number:
Ting Ji,Lianggen Hu,Jing Zeng. The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System[J].Acta mathematica scientia,Series A, 2019, 39(2): 307-315.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Diaz J I. Nonlinear Partial Differential Equations and Free Boundary. Boston, MA: Pitman Research, 1985 |
2 | Lions J L. Quelques Methodes de Resolution des Problimes aux Limits Non-lineaires. Paris: Dunod, 1969 |
3 | Bandle C , Giasrrusso E . Boundary blowup for semilinear elliptic equations with nonlinear gradient terms. Adv Differential Equations, 1996, 1: 133- 150 |
4 |
Covei D P . Non-existence criteria for solutions of the Lane-Emden-Fowler system. Appl Math Letters, 2012, 25: 610- 613
doi: 10.1016/j.aml.2011.09.069 |
5 | Covei D P . Schrödinger systems with a convection term for the (p1, ···, pd)-Laplacian in $\mathbb{R}^N$. Electron J Differential Equations, 2012, 67: 1- 13 |
6 |
Covei D P . Radial solutions for a quasilinear elliptic system of Schrödinger type. Comput Math Appl, 2013, 65: 1187- 1193
doi: 10.1016/j.camwa.2013.02.013 |
7 | 陈林. 一类拟线性Kirchhoff型椭圆方程组多解的存在性. 数学物理学报, 2017, 37A (4): 671- 683 |
Chen L . Multiple solutions for a quasilinear elliptic system of Kirchhoff type. Acta Math Sci, 2017, 37A (4): 671- 683 | |
8 |
Zhang X G . A necessary and sufficient condition for the existence of large solutions to mixed type elliptic systems. Appl Math Letters, 2012, 25: 2359- 2364
doi: 10.1016/j.aml.2012.07.002 |
9 |
Zhang X G , Liu L S , Liu Y H , Caccetta L . Entire large solutions for a class of Schrödinger systems with a nonlinear random operator. J Math Anal Appl, 2015, 423: 1650- 1659
doi: 10.1016/j.jmaa.2014.10.068 |
10 | Zhang Z J . Existence of positive radial solutions for quasilinear elliptic equations and systems. Electron J Differential Equations, 2016, 50: 1- 9 |
11 |
Lair A V . A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems. J Math Anal Appl, 2010, 365: 103- 108
doi: 10.1016/j.jmaa.2009.10.026 |
12 |
Peterson J D , Wood A W . Large solutions to non-monotone semilinear elliptic systems. J Math Anal Appl, 2011, 384: 284- 292
doi: 10.1016/j.jmaa.2011.05.061 |
13 |
Zhang X G , Liu L S . The existence and nonexistence of entire positive solutions of semilinear elliptic systems with gradient term. J Math Anal Appl, 2010, 371: 300- 308
doi: 10.1016/j.jmaa.2010.05.029 |
14 |
Cingolani S , Pistoia A . Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent. Z Angew Math Phys, 2004, 55: 201- 215
doi: 10.1007/s00033-003-1030-2 |
15 |
Hamydy A , Massar M , Tsouli N . Blow-up solutions to a (p1, p2)-Laplacian system with gradient term. Appl Math Letters, 2012, 25: 745- 751
doi: 10.1016/j.aml.2011.10.014 |
16 |
Tolksdorf P . Regularity for a more general class of quasilinear elliptic equations. J Differential Equations, 1984, 51: 126- 150
doi: 10.1016/0022-0396(84)90105-0 |
17 |
Hamydy A . Existence and uniqueness of nonnegative solutions for a boundary blow-up problem. J Math Anal Appl, 2010, 371: 534- 545
doi: 10.1016/j.jmaa.2010.05.053 |
[1] | Xiao Suping, Zhao Yuanzhang. Existence and Nonexistence of Solutions for Nonhomogeneous Dirichlet Exterior Problem to a Semilinear Hyperbolic Differential Inequality [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1167-1182. |
[2] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[3] | Qin Li,Zuodong Yang. Multiple Positive Solutions for a Quasilinear Elliptic System Involving the Caffarelli-Kohn-Nirenberg Inequality and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1634-1645. |
[4] | Yafeng Li,Qiao Xin,Chunlai Mu. The Discrete Possion Equation and the Heat Equation with the Exponential Nonlinear Term [J]. Acta mathematica scientia,Series A, 2019, 39(4): 773-784. |
[5] | Wang Shengjun, Han Yazhou. Generalized Picone's Identity and Its Applications for Heisenberg-Greiner Operators [J]. Acta mathematica scientia,Series A, 2017, 37(5): 895-901. |
[6] | Chen Lin. Multiple Solutions for a Quasilinear Elliptic System of Kirchhoff Type [J]. Acta mathematica scientia,Series A, 2017, 37(4): 671-683. |
[7] | Yang Lingyan, Li Xiaoguang, Chen Ying. A Sharp Threshold of Blow-Up of a Class of Schrödinger-Hartree Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1117-1123. |
[8] | Xiao Feng. Life Span of Solutions for a Class of Parabolic System with Large Initial Data [J]. Acta mathematica scientia,Series A, 2016, 36(4): 672-680. |
[9] | SHEN Ji-Hong, ZHANG Ming-You, YANG Yan-Bing, LIU Bo-Wei, XU Run-Zhang. Global Well-posedness of Cauchy Problem for Damped Multidimensional Generalized Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1173-1187. |
[10] | LI An, SONG Xin-Yu, WANG Zhi-Xiang. Practical Stability of Nonlinear Differential Equations Relative to Initial Time Difference via Perturbing Lyapunov Functions [J]. Acta mathematica scientia,Series A, 2011, 31(2): 351-359. |
[11] | LI Feng-Ping, YUAN Bao-Quan. On Some Explicit Blow-up Solutions to |3D Incompressible Magneto-hydrodynamic Equations [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1651-1656. |
[12] | JIN Yong-Yang. Nonexistence Results for a Class of Sub-P-Laplacians [J]. Acta mathematica scientia,Series A, 2009, 29(5): 1434-1441. |
|