Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 545-559.
Previous Articles Next Articles
Hailong Yuan1,2,*(),Yuping Wang1,Yanling Li3
Received:
2018-04-20
Online:
2019-06-26
Published:
2019-06-27
Contact:
Hailong Yuan
E-mail:yuanhailong@sust.edu.cn
Supported by:
CLC Number:
Hailong Yuan,Yuping Wang,Yanling Li. Positive Solutions of a Predator-Prey Model with Cross Diffusion[J].Acta mathematica scientia,Series A, 2019, 39(3): 545-559.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Crandall M G , Rabinowitz P H . Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8: 321- 340
doi: 10.1016/0022-1236(71)90015-2 |
2 |
Dancer E N . On the indices of fixed points of mapping in cones and applications. J Math Anal Appl, 1983, 91: 131- 151
doi: 10.1016/0022-247X(83)90098-7 |
3 |
Dancer E N . Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one. Bull London Math Soc, 2002, 34: 533- 538
doi: 10.1112/S002460930200108X |
4 | Du Y H , Lou Y . Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 6: 2443- 2475 |
5 |
Du Y H , Lou Y . S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predatorprey model. J Differential Equations, 1998, 144: 390- 440
doi: 10.1006/jdeq.1997.3394 |
6 |
Du Y H , Shi J P . A diffusive predator-prey model with a protection zone. J Differential Equations, 2006, 229: 63- 91
doi: 10.1016/j.jde.2006.01.013 |
7 |
Du Y H , Peng R , Wang M X . Effect of a protection zone in the diffusive Leslie predator-prey model. J Differential Equations, 2009, 246: 3932- 3956
doi: 10.1016/j.jde.2008.11.007 |
8 |
李海侠. 一类食物链模型正解的稳定性和唯一性. 数学物理学报, 2017, 37A (6): 1094- 1104
doi: 10.3969/j.issn.1003-3998.2017.06.009 |
Li H X . Stability and uniqueness of positive solutions for a food-chain model. Acta Math Sci, 2017, 37A (6): 1094- 1104
doi: 10.3969/j.issn.1003-3998.2017.06.009 |
|
9 |
Li L . Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305: 143- 166
doi: 10.1090/S0002-9947-1988-0920151-1 |
10 |
Li L . On positive solutions of a nonlinear equilibrium boundary values problem. J Math Anal Appl, 1989, 138: 537- 549
doi: 10.1016/0022-247X(89)90308-9 |
11 | López-Gómez J , Pardo R . Existence and uniqueness of coexistence states for the predator-prey LotkaVolterra model with diffusion on intervals. Differential Integral Equations, 1993, 6: 1025- 1031 |
12 | López-Gómez J . Spectral Theorey and Nonlinear Functional Analysis. Boca Raton, FL: Chapman and Hall/CRC, 2001 |
13 |
Kadota T , Kuto K . Positive steady states for a prey-predator model with some nonlinear diffusion terms. J Math Anal Appl, 2006, 323: 1387- 1401
doi: 10.1016/j.jmaa.2005.11.065 |
14 |
Kuto K , Yamada Y . Multiple coexistence states for a prey-predator system with cross-diffusion. J Differential Equations, 2004, 197: 315- 348
doi: 10.1016/j.jde.2003.08.003 |
15 | Kuto K . A strongly coupled diffusion effect on the stationary solution set of a prey-predator model. Adv Diff Eqns, 2007, 12: 145- 172 |
16 |
Kuto K , Yamada Y . Coexistence problem for a prey-predator model with density-dependent diffusion. Nonlinear Anal, 2009, 71: 2223- 2232
doi: 10.1016/j.na.2009.05.014 |
17 |
Kuto K , Yamada Y . Positive solutions for Lotka-Volterra competition systems with cross-diffsuion. Appl Anal, 2010, 89: 1037- 1066
doi: 10.1080/00036811003627534 |
18 |
Lou Y , Ni W M . Diffusion, self-diffusion and cross-diffusion. J Differential Equations, 1996, 131: 79- 131
doi: 10.1006/jdeq.1996.0157 |
19 |
Lou Y , Ni W M . Diffusion vs cross-diffusion:An elliptic approach. J Differential Equations, 1999, 154: 157- 190
doi: 10.1006/jdeq.1998.3559 |
20 |
Lou Y , Ni W M , Wu Y P . On the global existence of a cross-diffusion system. Discrete Contin Dyn Syst, 1998, 4: 193- 203
doi: 10.3934/dcdsa |
21 | Lou Y , Ni W M , Yotsutani S . On a limiting system in the Lotka-Volterra competition with cross-diffsuion. Discrete Contin Dyn Syst, 2004, 10: 435- 458 |
22 | Nakashima K , Yamada Y . Positive steady states for prey-predator models with cross-diffusion. Adv Diff Eqns, 1996, 6: 1099- 1122 |
23 |
Rabinowitz P H . Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7: 487- 513
doi: 10.1016/0022-1236(71)90030-9 |
24 |
Wang Y X , Li W T . Stationary problem of a predator-prey system with nonlinear diffusion effects. Comput Math Appl, 2015, 70: 2102- 2124
doi: 10.1016/j.camwa.2015.08.033 |
25 |
袁海龙, 李艳玲. 一类具有Lotka-Volterra竞争模型共存解的存在性与稳定性. 数学物理学报, 2017, 36A (1): 173- 184
doi: 10.3969/j.issn.1003-3998.2017.01.016 |
Yuan H L , Li Y L . Existence and stability of coexistence states for a Lotka-Volterra competition model. Acta Math Sci, 2017, 36A (1): 173- 184
doi: 10.3969/j.issn.1003-3998.2017.01.016 |
[1] | Xu Junwen, Wu Hongxing, Sun Yangjian. The Poincaré Bifurcation of a Class of Pendulum Equations [J]. Acta mathematica scientia,Series A, 2025, 45(3): 843-849. |
[2] | Liang Juan, Guo Zunguang, Zhang Hongtao. Steady-State Bifurcation for a Vegetation Model with Shading Effect [J]. Acta mathematica scientia,Series A, 2025, 45(3): 875-887. |
[3] | Xiao Jianglong, Song Yongli, Xia Yonghui. Spatiotemporal Dynamics Induced by the Interaction Between Fear and Schooling Behavior in a Diffusive Model [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1577-1594. |
[4] | Yang Hong, Zhang Xiaoguang. A Stochastic SIS Epidemic Model on Simplex Complexes [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1392-1399. |
[5] | Yang Jiaopeng, Liang Yong. Solitary and Periodic Solutions of the Generalized b-equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 670-686. |
[6] | Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788. |
[7] | Cheng Qingfang,Liao Jiafeng,Yuan Yanxiang. Existence of Positive Solutions for a Class of Schrödinger-Newton Systems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1373-1381. |
[8] | Dai Guowei,Gao Siyu,Ma Ruyun. Global Bifurcation for the Yamabe Equation on the Unit Sphere [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1391-1396. |
[9] | Chen Min,Hu Biyan,Luo Hong. Boundary Layer Separation of 2-D Incompressible Navier-Stokes-Allen-Cahn System [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1123-1132. |
[10] | Xu Jiafa, Yang Zhichun. Positive Solutions for a High Order Riemann-Liouville Type Fractional Impulsive Differential Equation Integral Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2023, 43(1): 53-68. |
[11] | Rui Xu,Yan Yang. Dynamics of an HTLV-I Infection Model with Delayed and Saturated CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1836-1848. |
[12] | Yu Duan,Xin Sun. Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1103-1111. |
[13] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[14] | Die Hu,Qi Gao. Multiple Solutions to Logarithmic Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 401-417. |
[15] | Xueli Jiang,Xuan Deng,Qiuhao Wen,Yanqin Xiong. Limit Circle Bifurcations of Polynomial Differential System with Two Parallel Switch Straight Lines [J]. Acta mathematica scientia,Series A, 2022, 42(2): 353-364. |
|