Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 570-581.
Previous Articles Next Articles
Jing Cui*(),Qiuju Liang,Nana Bi
Received:
2017-02-24
Online:
2019-06-26
Published:
2019-06-27
Contact:
Jing Cui
E-mail:jcui123@126.com
Supported by:
CLC Number:
Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion[J].Acta mathematica scientia,Series A, 2019, 39(3): 570-581.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Maslowski B , Nualart D . Evolution equations driven by a fractional Brownian motion. J Funct Anal, 2003, 110: 277- 305 |
2 | Boufoussi B , Hajji S . Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2011, 82 (8): 1549- 1558 |
3 |
Boufoussi B , Hajji S . Stochastic delay differential equations in a Hilbert space driven by fractional Brownian motion. Statist Probab Lett, 2017, 129: 222- 229
doi: 10.1016/j.spl.2017.06.006 |
4 |
Feyel D , Pradelle A de la . On fractional Brownian processes. Potential Anal, 1999, 10: 273- 288
doi: 10.1023/A:1008630211913 |
5 | Nualart D . The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006 |
6 | Ruan D H , Luo J W . Fixed points and exponential stability of stochastic functional partial differential equations driven by fractional Brownian motion. Publ Math Debrecen, 2015, 86: 285- 293 |
7 | Prato G Da , Zabczyk J . Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge Univ Press, 1992 |
8 |
Arthi G , Park Ju H , Jung H Y . Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion. Commun Nonlinear Sci Numer Simul, 2016, 32: 145- 157
doi: 10.1016/j.cnsns.2015.08.014 |
9 |
Cui J , Yan L , Sun X . Exponential stability for neutral stochastic partial differential equations with delays and Poisson Jumps. Statist Probab Lett, 2011, 81: 1970- 1977
doi: 10.1016/j.spl.2011.08.010 |
10 |
Luo J W . Stability of stochastic partial differential equations with infinite delays. J Comput Appl Math, 2008b, 222: 364- 371
doi: 10.1016/j.cam.2007.11.002 |
11 | Acquistapace P , Terreni B . A unified approach to abstract linear nonautonomous parabolic equations. Rend Sem Mat Univ Padova, 1987, 78: 47- 107 |
12 |
Acquistapace P , Terreni B . Initial boundary value problems and optimal control for nonautonomous parabolic systems. SIAM J Control Optim, 1991, 29: 89- 118
doi: 10.1137/0329005 |
13 |
Sakthivel R , Luo J W . Asymptotic stability of impulsive stochastic partial differential equations with infinite delays. J Math Anal Appl, 2009, 356: 1- 6
doi: 10.1016/j.jmaa.2009.02.002 |
14 |
Caraballo T , Liu K . Exponential stability of mild solutions of stochastic partial differential equations with delays. Stoch Anal Appl, 1999, 17: 743- 763
doi: 10.1080/07362999908809633 |
15 |
Caraballo T , Garrido-Atienza M J , Taniguchi T . The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74: 3671- 3684
doi: 10.1016/j.na.2011.02.047 |
16 | Caraballo T , Mamadou A D . Asymptotic stability of neutral stochastic functional integro-differential equations. Electron Commun Probab, 2015, 20 (1): 1- 13 |
17 |
Caraballo T , Garrido-Atienza Mar'a J , Jos'e Real . Asymptotic Stability of Nonlinear Stochastic Evolution Equations. Stoch Anal Appl, 2003, 21 (2): 301- 327
doi: 10.1081/SAP-120019288 |
18 |
Duncan T E , Maslowski B , Pasik-Duncan B . Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch Dyn, 2002, 2: 225- 250
doi: 10.1142/S0219493702000340 |
19 |
Duc L H , Garrido-Atienzac M J . Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in ($\frac{1}{2}$, 1). J Differential Equations, 2018, 264: 1119- 1145
doi: 10.1016/j.jde.2017.09.033 |
20 |
Taniguchi T , Liu K , Truman A . Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces. J Differential Equations, 2002, 181: 72- 91
doi: 10.1006/jdeq.2001.4073 |
21 | Mao X . Stochastic Differential Equations and Applications. Chichester, UK: Horwood Publishing, 1997 |
22 | Ren Y , Cheng X , Sakthivel R . On time-dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay. Math Method Appl Sci, 2013, 37: 2177- 2184 |
23 | Ren Y , Cheng X , Sakthivel R . Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm. Appl Math Comput, 2014, 247: 205- 212 |
24 |
Revathib P , Sakthivel R , Ren Y . Stochastic functional differential equations of Sobolev-type with infinite delay. Statist Probab Lett, 2016, 109: 68- 77
doi: 10.1016/j.spl.2015.10.019 |
25 | Bahuguna D , Sakthivel R , Chadha A . Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay. Stoch Anal Appl, 2017, 39: 63- 88 |
26 |
Ren Y , Hou T , Sakthivel R . Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay. Front Math China, 2015, 10: 351- 365
doi: 10.1007/s11464-015-0392-z |
[1] | Lv Dongting. Globally Asymptotic Stability of 2-Species Reaction-Diffusion Systems of Spatially Inhomogeneous Models [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1171-1183. |
[2] | Xu Fei, Zhang Yong. Uniqueness and Asymptotic Stability of Time-Periodic Solutions for the Fractional Burgers Equation [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1710-1722. |
[3] |
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng.
Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter |
[4] | Li Jize,Qiu Jixiu,Zhou Yonghui. Anticipative Nonlinear Filtering Equations Affected by Observation Noises and Stability of Linear Filtering [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1244-1254. |
[5] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[6] | Hongxing Wu,Dengbin Yuan,Shenghua Wang. Asymptotic Stability Analysis of Solutions to Transport Equations in Structured Bacterial Population Growth [J]. Acta mathematica scientia,Series A, 2022, 42(3): 807-817. |
[7] | Zaiyong Feng,Ning Chen,Yongpeng Tai,Zhengrong Xiang. On the Observer Design for Fractional Singular Linear Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1529-1544. |
[8] | Yi Ding,Jingjun Guo. Pricing Asian Options Under Time-Changed Mixed Fractional Brownian Motion with Transactions Costs [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1135-1146. |
[9] | Liping Xu,Zhi Li. Transportation Inequalities for Mixed Stochastic Differential Equations [J]. Acta mathematica scientia,Series A, 2021, 41(1): 227-236. |
[10] | Liang Wu. Hurst Parameter Under Finite Second Moment and Under Heavy Tails [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1072-1082. |
[11] | Liheng Sang,Zhenlong Chen,Xiaozhen Hao. Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2020, 40(3): 796-810. |
[12] | Qikang Ran. SDE Driven by Fractional Brown Motion and Their Coefficients are Locally Linear Growth [J]. Acta mathematica scientia,Series A, 2020, 40(1): 200-211. |
[13] | Menglan Liao,Bin Guo. Asymptotic Stability of Weak Solutions to Wave Equation with Variable Exponents and Strong Damping Term [J]. Acta mathematica scientia,Series A, 2020, 40(1): 146-155. |
[14] | Zhaoqiang Yang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1514-1531. |
[15] | Gengen Zhang,Wansheng Wang,Aiguo Xiao. Asymptotic Estimation of the Trapezoidal Method for a Class of Neutral Differential Equation with Variable Delay [J]. Acta mathematica scientia,Series A, 2019, 39(3): 560-569. |
|