Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (4): 909-917.
Previous Articles Next Articles
Xiaojie Jing,Aimin Zhao*(),Guirong Liu
Received:
2018-04-12
Online:
2019-08-26
Published:
2019-09-11
Contact:
Aimin Zhao
E-mail:lgr5791@sxu.edu.cn
Supported by:
CLC Number:
Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission[J].Acta mathematica scientia,Series A, 2019, 39(4): 909-917.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
参数 | 取值 | 意义 | 来源 |
新生儿的出生率 | 国家统计局(2017) | ||
0.0131 | 自然死亡率 | 国家统计局(2017) | |
0.8216 | 新生儿接种疫苗的比例 | 文献[ | |
人与人的感染率 | 估计 | ||
环境对人的感染率 | 估计 | ||
0.15 | 无效的接种率 | 中国疾病预防控制中心(2017) | |
0.95 | 接种疫苗后获得免疫并成为恢复者的转移率 | 中国疾病预防控制中心(2017) | |
26 | 潜伏者变为染病者的比例 | 中国疾病预防控制中心(2017) | |
20 | 染病者的恢复率 | 中国疾病预防控制中心(2017) | |
8 | 染病者排放到环境中的病毒的速率 | 假设 | |
1.6 | 环境中病毒的失效率 | 假设 |
1 |
Liu X N , Takeuchi Y , Iwami S . SV IR epidemic models with vaccination strategies. J Theor Biol, 2008, 253 (1): 1- 11
doi: 10.1016/j.jtbi.2007.10.014 |
2 |
Mossong J , Muller C P . Modelling measles re-emergence as a result of waning of immunity in vaccinated populations. Vaccine, 2003, 21 (31): 4597- 4603
doi: 10.1016/S0264-410X(03)00449-3 |
3 |
Ejima K , Omori R . Real-time investigation of measles of vaccine efficacy. Int J Biol Sci, 2012, 8 (5): 620- 629
doi: 10.7150/ijbs.4329 |
4 |
Bolarin G . On the dynamical analysis of a new model for measles infection. IJMTT, 2014, 7 (2): 144- 155
doi: 10.14445/22315373/IJMTT-V7P519 |
5 | 姜翠翠, 宋丽娟, 王开发. 考虑部分免疫和潜伏期的麻疹传染病模型的稳定性分析. 生物数学学报, 2017, 32 (1): 57- 64 |
Jiang C C , Song L J , Wang K F . Stability analysis of a measles epidemic model with partial immunity and latency. J Biomath, 2017, 32 (1): 57- 64 | |
6 |
Garba S M , Safi M A , Usaini S . Mathematical model for assessing the impact of vaccination and treatment on measles transmission dynamics. Math Meth Appl Sci, 2017, 40 (18): 6371- 6388
doi: 10.1002/mma.4462 |
7 | Trottier H , Philippe P . Deterministic modelling of infectious diseases:measles cycles and the role of births and vaccination. The Internet J of Infect Diseases, 2002, 2 (2): 1- 8 |
8 | Trottier H , Philippe P . Deterministic modelling of infectious diseases:applications to measles and other similar infections. The Internet J of Infect Diseases, 2001, 2 (1): 1- 10 |
9 |
Huang J C , Ruan S G , Wu X , Zhou X L . Seasonal transmission dynamics of measles in China. Theor Biosci, 2018, 137 (2): 185- 195
doi: 10.1007/s12064-018-0271-8 |
10 |
Van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180 (1-2): 29- 48
doi: 10.1016/S0025-5564(02)00108-6 |
11 | Lasalle J P . The Stability of Dynamical Systems. Philadelphia: SIMA, 1976 |
12 | 马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法. 北京: 科学出版社, 2015 |
Ma Z E , Zhou Y C , Li C Z . Qualitative and Stability of Ordinary Differential Equation. Beijing: Science Press, 2015 | |
13 | 马知恩, 周义仓, 王稳地, 靳祯. 传染病动力学的数学建模与研究. 北京: 科学出版社, 2004 |
Ma Z E , Zhou Y C , Wang W D , Jin Z . The Mathematical Modeling and Research of Infectious Diseases. Beijing: Science Press, 2004 |
[1] | Wu Wenbin, Ren Xue, Zhang Ran. Traveling Waves for a Discrete Diffusive Vaccination Model with Delay [J]. Acta mathematica scientia,Series A, 2025, 45(3): 858-874. |
[2] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
[3] |
Pang Yuting,Zhao Dongxia,Zhao Xin,Gao Caixia.
The PDP Boundary Control for a Class of 2 |
[4] | Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation [J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701. |
[5] | Liu Lili, Wang Honggang, Li Yazhi. A Generalized HBV Diffusive Model with DNA-Containing Capsids and Cell-Cell Infection [J]. Acta mathematica scientia,Series A, 2023, 43(2): 604-624. |
[6] | Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860. |
[7] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[8] | Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870. |
[9] | Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096. |
[10] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[11] | Yonghui Zhou. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations [J]. Acta mathematica scientia,Series A, 2020, 40(4): 983-992. |
[12] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[13] | Xinzhe Zhang,Guofeng He,Gang Huang. Dynamical Properties of a Delayed Epidemic Model with Vaccination and Saturation Incidence [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1247-1259. |
[14] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[15] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
|