Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (5): 1011-1017.
Previous Articles Next Articles
Received:
2018-08-30
Online:
2019-10-26
Published:
2019-11-08
CLC Number:
Zhuhong Zhang. Four-Dimensional Shrinking Gradient Ricci Solitons with Half Positive Isotropy Curvature[J].Acta mathematica scientia,Series A, 2019, 39(5): 1011-1017.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Besse A. Einstein Manifolds. Berlin: Springer-Verlag, 1987 |
2 | Cao H D . Recent progress on Ricci solitons. Adv Lect Math, 2010, 11: 1- 38 |
3 |
Cao H D , Chen B L , Zhu X P . Recent Developments on the Hamilton's Ricci flow. Surv Diff Geom, 2007, 12 (1): 47- 112
doi: 10.4310/SDG.2007.v12.n1.a3 |
4 | Cao H D , Zhou D T . On complete gradient shrinking solitons. J Diff Geom, 2009, 85 (2): 175- 185 |
5 |
Chen B L . Strong uniqueness of the Ricci flow. J Diff Geom, 2009, 82: 363- 382
doi: 10.4310/jdg/1246888488 |
6 |
Chen B L , Tang S H , Zhu X P . Complete classification of compact four manifolds with positive isotropy curvature. J Diff Geom, 2012, 91: 41- 80
doi: 10.4310/jdg/1343133700 |
7 |
Chen B L , Zhu X P . Ricci flow with surgery on four-manifolds with positive isotropy curvature. J Diff Geom, 2006, 74: 177- 264
doi: 10.4310/jdg/1175266204 |
8 |
Chen X X , Wang Y Q . On four-dimensional anti-self-dual gradient Ricci solitons. J Geom Anal, 2015, 25 (2): 1335- 1343
doi: 10.1007/s12220-014-9471-8 |
9 |
Fernandez-Lopez M , Garcia-Rio E . Rigidity of shrinking Ricci solitons. Math Z, 2011, 269: 461- 466
doi: 10.1007/s00209-010-0745-y |
10 |
Hamilton R S . Four manifolds with positive isotropic curvature. Comp Ana Geom, 1997, 5: 1- 92
doi: 10.4310/CAG.1997.v5.n1.a1 |
11 | Li X L, Ni L, Wang K. Four-dimensional gradient shrinking solitons with positive isotropy curvature. 2016, arXiv: 1603.05264 |
12 | Micallef M , Moore J D . Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropy two-planes. Ann of Math, 1988, 127 (2): 199- 227 |
13 |
Micallef M , Wang M . Metrics with nonnegative isotropic curvature. Duke Math J, 1993, 72 (3): 649- 672
doi: 10.1215/S0012-7094-93-07224-9 |
14 |
Munteanu O , Sesum N . On gradient Ricci solitons. J Geom Anal, 2013, 23 (2): 539- 561
doi: 10.1007/s12220-011-9252-6 |
15 |
Munteanu O , Wang J P . Geometry of shrinking Ricci solitons. Comp Math, 2015, 151 (12): 2273- 2300
doi: 10.1112/S0010437X15007496 |
16 | Munteanu O, Wang J P. Positively curved shrinking Ricci solitons are compact. 2015, arXiv: 1504.07898 |
17 |
Ni L , Wallach N . On a classification of the gradient shrinking solitons. Math Res Lett, 2008, 15 (5): 941- 955
doi: 10.4310/MRL.2008.v15.n5.a9 |
18 |
Petersen P , Wylie W . On the classification of gradient Ricci solitons. Geom Topol, 2010, 14 (4): 2277- 2300
doi: 10.2140/gt.2010.14.2277 |
19 | Richard T , Seshadri H . Positive isotropic curvature and self-duality in dimension 4. Manu Math, 2016, 149 (3): 443- 457 |
20 | Wu J Y, Wu P, Wylie W. Gradient shrinking Ricci solitons of half harmonic Weyl curvature. 2014, arXiv: 1410.7303 |
21 | Wu P. Berger curvature decomposition, Weitzenböck formula, and canonical metrics on four-manifolds. 2014, arXiv: 1410.7260 |
22 |
Zhang Z H . Gradient shrinking solitons with vanishing Weyl tensor. Pacific J Math, 2009, 242 (1): 189- 200
doi: 10.2140/pjm.2009.242.189 |
[1] | Yang Junyuan, Zhang Chenlin, Yang Li. Study on Comprehensive Control Strategies of an Age Structured Influenza Model [J]. Acta mathematica scientia,Series A, 2024, 44(3): 804-814. |
[2] |
Lu Weiping,Liu Hanbing.
Sampled-Data Time Optimal Control for Heat Equation with Potential in |
[3] | Zou Yonghui,Xu Xin. Existence of Back-Flow Point for the Two-Dimensional Compressible Prandtl Equation [J]. Acta mathematica scientia,Series A, 2023, 43(3): 691-701. |
[4] | Xiaoyong Cui,Can Zhang. Turnpike Properties of a Class of Optimal Control Problems with Exponential Weights [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1256-1264. |
[5] | Zhenjie Li,Lei Li. A Symmetry Result for Solutions of the Fractional Laplacian with Convex Nonlinearites [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1224-1234. |
[6] | Ruijing Li. A General Maximum Principle for Forward-Backward Stochastic Control Systems of Mean-Field Type [J]. Acta mathematica scientia,Series A, 2019, 39(1): 143-155. |
[7] | Zhang Chunguo, Liu Yubiao, Liu Weiwei. Boundary Optimal Control for the Timoshenko Beam [J]. Acta mathematica scientia,Series A, 2018, 38(3): 454-466. |
[8] | HUANG Qin, RUAN Qi-Hua. Elliptic Boundary Value Problems on Compact Manifolds [J]. Acta mathematica scientia,Series A, 2015, 35(1): 43-49. |
[9] | TU Jie, FU Lin, ZHOU Xin. Exact Solutions to Hyperbolic Geometric Flows [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1150-1159. |
[10] | XU Jin-Ju. A Remark on the Convexity of Hypersurface with Prescribed Curvature Equations [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1176-1180. |
[11] |
Wang Bing;Xu Xuewen.
Cauchy Problem for the Nonhomogeneous Hyperbolic Conservation Laws with the Degenerate Viscous Term [J]. Acta mathematica scientia,Series A, 2008, 28(1): 109-115. |
[12] | LUO Zhi-Hua, WANG Mian-Sen. Optimal Harvesting Control Problem for Linear Periodic Age dependent Population Dynamic System [J]. Acta mathematica scientia,Series A, 2005, 25(6): 905-912. |
[13] | DING Jun-Tang. Maximum |Principles for a Class of Semilinear Parabolic Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2004, 24(1): 63-70. |
|