Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (6): 1381-1404.
Previous Articles Next Articles
Limin Zhang,Haiyan Xu,Chunhua Jin*()
Received:
2018-09-27
Online:
2019-12-26
Published:
2019-12-28
Contact:
Chunhua Jin
E-mail:jinchhua@126.com
Supported by:
CLC Number:
Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production[J].Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Aiseba B , Bendahmane M , Noussair A . A reaction-diffusion system modeling predator-prey with pre-taxis. Nonlinear Anal Real World Anal, 2008, 9: 2086- 2105
doi: 10.1016/j.nonrwa.2007.06.017 |
2 | Gao X , Zhou J , Tian M . Global boundedness and asymptotic behavior for an attraction-repulsion chemotaxis system with logistic source. Acta Math Sci, 2017, 37A: 113- 121 |
3 |
Jin C . Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanism. Bull London Math Soc, 2018, 50: 598- 618
doi: 10.1112/blms.12160 |
4 |
Jin C . Large time behavior of solutions to a chemotaxis model with porous medium diffusion. J Math Anal Appl, 2019, 478: 195- 211
doi: 10.1016/j.jmaa.2019.05.027 |
5 |
Jin H , Wang Z . Global stability of prey-taxis systems. J Differential Equations, 2017, 262: 1257- 1290
doi: 10.1016/j.jde.2016.10.010 |
6 |
Kareiva P , Odell G . Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search. Amer Nat, 1987, 130: 233- 270
doi: 10.1086/284707 |
7 |
Lee J M , Hillen T , Lewis M A . Pattern formation in prey-taxis systems. J Biol Dynam, 2009, 3: 551- 573
doi: 10.1080/17513750802716112 |
8 |
Stinner C , Surulescu C , Winkler M . Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J Math Anal, 2014, 46: 1969- 2007
doi: 10.1137/13094058X |
9 | Sugiyama Y . Time global existence and asymptotic behavior of solutions to degenerate quasilinear parabolic systems of chemotaxis. Differential Integral Equations, 2007, 20: 133- 180 |
10 |
Tao Y . Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonlinear Anal Real World Anal, 2010, 11: 2056- 2064
doi: 10.1016/j.nonrwa.2009.05.005 |
11 | Tello J , Wrzosek D . Predator-prey model with diffusion and indirect prey-taxis. Mathematical Models and Methods in Applied Science, 2016, 11: 2129- 2162 |
12 |
Tao Y , Winkler M . Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete Contin Dyn Syst, 2012, 32: 1901- 1914
doi: 10.3934/dcds.2012.32.1901 |
13 |
Wu S , Shi J , Wu B . Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J Differential Equations, 2016, 260: 5847- 5874
doi: 10.1016/j.jde.2015.12.024 |
14 |
Wang X , Wang W , Zhang G . Global bifurcation of solutions for a predator-prey model with prey-taxis. Math Methods Appl Sci, 2015, 38: 431- 443
doi: 10.1002/mma.3079 |
15 | Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248: 2889-2905 |
16 |
Winkler M . Chemotaxis with logistic source:very weak global solutions and their boundedness properties. J Math Anal Appl, 2008, 348: 708- 729
doi: 10.1016/j.jmaa.2008.07.071 |
17 |
Zheng P , Mu C , Hu X . Persistence property in a two-species chemotaxis system with two signals. J Math Phys, 2017, 58 (11): 111501
doi: 10.1063/1.5010681 |
18 | Wu Z Q , Yin J X , Wang C P . Introduction to Elliptic and Parabolic Equations. Beijing: Science Press, 2003 |
[1] | Cui Jianan,Chai Shugen. Indirect Boundary Stabilization of Strongly Coupled Variable Coefficient Wave Equations [J]. Acta mathematica scientia,Series A, 2025, 45(2): 389-407. |
[2] | Bai Jinyan, Chai Shugen. Stabilization of Degenerate Wave Equations with Delayed Boundary Feedback [J]. Acta mathematica scientia,Series A, 2024, 44(1): 133-139. |
[3] | Han Zhongjie, He Yiheng, Zhao Zhixue. Indirect Stabilization and Optimal Decay Rates of Weakly Coupled Plates with Various Types of Damping [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1681-1698. |
[4] | Kexin Luo,Shaoyong Lai. Global Weak Solutions to a High-Order Camass-Holm Type Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 427-441. |
[5] | Yaxuan Zhang,Genqi Xu,Yanni Guo. Exponential Tracking Control for a Star-Shaped Network of Euler-Bernoulli Beams with Unknown Internal Disturbance [J]. Acta mathematica scientia,Series A, 2019, 39(3): 596-610. |
[6] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |
[7] | LIU Jian, LIAN Ru-Xu, QIAN Mao-Fu. Global Existence of Solution to Bipolar Navier-Stokes-Poisson System [J]. Acta mathematica scientia,Series A, 2014, 34(4): 960-976. |
[8] | WU Shu-Jin, SONG Qiong, GUO Xiao-Lin. p-Moment Boundedness of Functional Differential Equations with Random Impulses [J]. Acta mathematica scientia,Series A, 2010, 30(1): 126-141. |
[9] | Dong Wangyuan. Feedback Stabilization of a Class of Parabolic Systems with Neumann Boundary Conditions [J]. Acta mathematica scientia,Series A, 2008, 28(6): 1133-1149. |
[10] | Bao Jundong; Deng Feiqi; Luo Qi. Robust Stabilization for Delay Differential Systems Based on SLQ Control [J]. Acta mathematica scientia,Series A, 2007, 27(2): 359-367. |
[11] | DIAO Hong-Yong, WANGGuang-Lan. Existence and Global Attractivity of Almost Periodic Solutions for Hopfield Neural |Networks |with Variable Delay [J]. Acta mathematica scientia,Series A, 2004, 4(6): 723-729. |
[12] | ZHANG Hong-Wei, HE Jing-Yang. Existence of Global Weak Solution and Stabilityof a Class Nonlinear Evolution Equation [J]. Acta mathematica scientia,Series A, 2004, 24(3): 329-336. |
[13] | WANG Geng-Sheng, LI Shu-Gang. Stabilization of the Phase-field System via Internal Feedback |Control [J]. Acta mathematica scientia,Series A, 2004, 24(2): 193-199. |
[14] | HU Gen-Qi, FENG De-Xin. Uniform Stabilization of Timoshenko Beams with Boundary Feedba ck Control [J]. Acta mathematica scientia,Series A, 2003, 23(6): 719-728. |
[15] | Xing Jiasheng, Wang Yuanming. The Existence of Weak Solution for a Class of the Semiconductor Equation [J]. Acta mathematica scientia,Series A, 1998, 18(3): 289-296. |
|