Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (6): 1499-1513.
Previous Articles Next Articles
Received:
2018-06-11
Online:
2019-12-26
Published:
2019-12-28
Contact:
Weiyin Fei
E-mail:wyfei@ahpu.edu.cn
Supported by:
CLC Number:
Chen Fei,Weiyin Fei. Consistency of Least Squares Estimation to the Parameter for Stochastic Differential Equations Under Distribution Uncertainty[J].Acta mathematica scientia,Series A, 2019, 39(6): 1499-1513.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
1.0313 | 1.0193 | 1.0144 | 1.0089 | 1.0057 | |
1.0104 | 1.0027 | 1.0014 | 0.9972 | 0.9978 | |
0.0209 | 0.0166 | 0.0130 | 0.0117 | 0.0079 |
"
1.1108 | 1.0955 | 1.0903 | 1.0780 | 1.0672 | |
0.9718 | 0.9713 | 0.9879 | 0.9888 | 0.9995 | |
0.1390 | 0.1241 | 0.1023 | 0.0892 | 0.0677 |
1 | Artzner P , Delbaen F , Eber J M , Heath D . Coherent measures of risk. Math Finance, 1999, 9 (3): 203- 228 |
2 | Bishwal J P N. Parameter Estimation in Stochastic Differential Equations. Berlin Heidelberg: Springer-Verlag, 2008 |
3 |
Chen Z . Strong laws of large numbers for sub-linear expectations. Science China Mathematics, 2016, 59 (5): 945- 954
doi: 10.1007/s11425-015-5095-0 |
4 |
Chen Z , Epstein L . Ambiguity, risk and asset returns in continuous time. Econometrica, 2002, 70 (4): 1403- 1443
doi: 10.1111/1468-0262.00337 |
5 |
Cheridito P , Kawaguchi H , Maejima M . Fractional Ornstein-Uhlenbeck processes. Electron J Probab, 2003, 8: 1- 14
doi: 10.1214/ECP.v8-1064 |
6 |
Delbaen F , Peng S , Rosazza Gianin E . Representation of the penalty term of dynamic concave utilities. Finance Stoch, 2010, 14: 449- 472
doi: 10.1007/s00780-009-0119-7 |
7 |
Ellsberg D . Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics, 1961, 75: 643- 669
doi: 10.2307/1884324 |
8 |
Epstein L , Ji S . Ambiguity volatility and asset pricing in continuous time. Journal of Mathematical Economics, 2014, 50: 269- 282
doi: 10.1016/j.jmateco.2013.09.005 |
9 |
Fan J , Peng H . Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 2004, 32: 928- 961
doi: 10.1214/009053604000000256 |
10 | Fei C , Fei W Y , Yan L T . Existence and stability of solutions to highly nonlinear stochastic differential delay equations driven by G-Brownian motion. Appl Math J Chinese Univ, 2019, 34B (2): 184- 204 |
11 |
Fei W Y . Optimal portfolio choice based on α-MEU under ambiguity. Stochastic Models, 2009, 25: 455- 482
doi: 10.1080/15326340903088826 |
12 | Fei W Y, Fei C. Optimal stochastic control and optimal consumption and portfolio with G-Brownian motion. 2013, arXiv: 1309.0209v1 |
13 | Fei W Y, Fei C. On exponential stability for stochastic differential equations disturbed by G-Brownian motion. 2013, arXiv: 1311.7311v1 |
14 |
Gao F Q . Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 2009, 119: 3356- 3382
doi: 10.1016/j.spa.2009.05.010 |
15 |
Hu M , Ji S , Peng S , Song Y . Backward stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 2014, 124: 759- 784
doi: 10.1016/j.spa.2013.09.010 |
16 |
Hu Y , Nualart D . Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statistics and Probability Letters, 2010, 80: 1030- 1038
doi: 10.1016/j.spl.2010.02.018 |
17 | Huber P J. Robust Statistics. New York: John Wiley and Sons, 1981 |
18 |
Kasonga R . The consistemcy of a non-linear least squares estimation from diffusion processes. Stochastic Processes and their Applications, 1988, 30: 263- 275
doi: 10.1016/0304-4149(88)90088-9 |
19 | Knight F H. Risk, Uncertainty and Profit. Boston: Houghton Mifflin, 1921 |
20 | Kutoyants Yu A. Statistical Inference for Ergodic Diffusion Processes. London: Springer-Verlag, 2004 |
21 | Lin L , Dong P , Song Y , Zhu L . Upper expectation parametric regression. Statistica Sinica, 2017, 27 (3): 1265- 1280 |
22 |
Lin L , Shi Y , Wang X , Yang S . k-sample upper expectation linear regression-modeling, identifiability, estimation and prediction. Journal of Statistical Planning and Inference, 2016, 170: 15- 26
doi: 10.1016/j.jspi.2015.09.002 |
23 |
Lin Q . Some properties of stochastic differential equations driven by G-Brownian motion. Acta Math Sin (Engl Ser), 2013, 29: 923- 942
doi: 10.1007/s10114-013-0701-y |
24 | Lin Y . Stochastic differential eqations driven by G-Brownian motion with reflecting boundary. Electron J Probab, 2013, 18 (9): 1- 23 |
25 |
Luo P , Wang F . Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stochastic Processes and their Applications, 2014, 124: 3869- 3885
doi: 10.1016/j.spa.2014.07.004 |
26 | Mao X. Stochastic Differential Equations and Their Applications, 2nd Edition. Chichester: Horwood Pub, 2007 |
27 | Peng S. Nonlinear expectations and stochastic calculus under uncertainty. 2010, arXiv: 1002.4546v1 |
28 | Prakasa Rao B L S. Statistical Inference for Diffusion Type Processes. London: Arnold, 1999 |
29 | Shen G J , Yin X W , Yan L T . Least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional Brownian motion. Acta Mathematica Scientia, 2016, 36B (2): 394- 408 |
30 |
Sun C F , Ji S L . The least squares estimator of random variables under sublinear expectations. Journal of Mathematical Analysis and Applications, 2017, 451 (2): 906- 923
doi: 10.1016/j.jmaa.2017.02.020 |
[1] | Wang Jixia, Xiao Qingxian. Local Estimation of the Diffusion Coefficient for Time-Inhomogeneous Diffusion Models [J]. Acta mathematica scientia,Series A, 2015, 35(2): 332-344. |
[2] | TAO Bao. Asymptotic Properties of the Negative Extreme-value Index Estimator [J]. Acta mathematica scientia,Series A, 2014, 34(3): 611-618. |
[3] | YIN Chang-Ming, LI Yong-Ming, WANG Peng-Yan. Strong Convergence Rates of the Maximum Quasi-Likelihood Estimator in Generalized Linear Models [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1058-1064. |
[4] |
Li Guoliang; Liu Luqin.
Strong Consistency of a Class of Estimators in Partial Linear Model under Martingale Difference Sequence [J]. Acta mathematica scientia,Series A, 2007, 27(5): 788-801. |
[5] | Ding Jieli;Chen Xiru. Strong Consistency of the Maximum Likelihood Estimator in Generalized Linear Models [J]. Acta mathematica scientia,Series A, 2006, 26(2): 168-173. |
[6] | TUN Qun-Yang. Strong Consistency of M Estimator in Linear Model for rho mixing Samples [J]. Acta mathematica scientia,Series A, 2005, 25(1): 41-46. |
[7] | CHEN Gui-Jing, CHEN Yu-MIng, BAI Zhi-Dong, HU Fei-Fang. A Kind of Optimal Design in Urn Models [J]. Acta mathematica scientia,Series A, 2003, 23(2): 208-214. |
[8] | Chen Minghua. Strong Consistency of Estimators in a Semi-Parametric Model with Completed and Censored Data [J]. Acta mathematica scientia,Series A, 1999, 19(5): 501-506. |
|