Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (1): 156-168.
Previous Articles Next Articles
Received:
2018-05-08
Online:
2020-02-26
Published:
2020-04-08
Contact:
Lianggen Hu
E-mail:hulianggen@tom.com
Supported by:
CLC Number:
Qianqiu Wu,Lianggen Hu. Liouville Type Theorems for Stable Solutions of the Degenerate Elliptic System with Weight[J].Acta mathematica scientia,Series A, 2020, 40(1): 156-168.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Farina A . On the classification of solutions of Lane-Emden equation on unbounded domains of $\mathbb{R} ^N$. J Math Pures Appl, 2007, 87, 537- 561
doi: 10.1016/j.matpur.2007.03.001 |
2 |
Dávila J , Dupaigne L , Wang K L , Wei J C . A monotonicity formula and a Liouville-type theorem for a forth order supercritical problem. Adv Math, 2014, 258, 240- 285
doi: 10.1016/j.aim.2014.02.034 |
3 |
Cowan C , Ghoussoub N . Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains. Calc Var PDE, 2014, 49, 291- 305
doi: 10.1007/s00526-012-0582-4 |
4 |
Dupaigne L , Ghergu M , Goubet O , Warnault G . The Gel'fand problem for the biharmonic operator. Arch Ration Mech Anal, 2013, 208, 725- 752
doi: 10.1007/s00205-013-0613-0 |
5 |
Souplet P H . The proof of the Lane-Emden conjecture in four space dimensions. Adv Math, 2009, 221, 1409- 1427
doi: 10.1016/j.aim.2009.02.014 |
6 |
Hajlaoui H , Harrabi A , Ye D . On stable solutions of biharmonic problems with polynomial growth. Pacific J Math, 2014, 270, 79- 93
doi: 10.2140/pjm.2014.270.79 |
7 |
Hu L G , Zeng J . Liouville type theorems for stable solutions of the weighted elliptic system. J Math Anal Appl, 2016, 437, 882- 901
doi: 10.1016/j.jmaa.2016.01.032 |
8 |
Birindelli I , Capuzzo Dolcetta I , Cutri A . Liouville theorems for semilinear equations on the Heisenberg group. Ann Inst Henri Poincare Non Linéaire Anal, 1997, 14, 295- 308
doi: 10.1016/S0294-1449(97)80138-2 |
9 |
Birindelli I , Prajapat J . Nonlinear Liouville theorems in the Heisenberg group via the moving plane method. Comm Partial Differential Equations, 1999, 24, 1875- 1890
doi: 10.1080/03605309908821485 |
10 |
张书陶, 韩亚洲. Heisenberg群上移动球面法的应用-一类半线性方程的Liouville型定理. 数学物理学报, 2017, 37A (2): 278- 286
doi: 10.3969/j.issn.1003-3998.2017.02.007 |
Zhang S T , Han Y Z . An application of the method of moving shpere in the Heiseberg group-Liouville type theorem of a class of semilinear equatoins. Acta Math Sci, 2017, 37A (2): 278- 286
doi: 10.3969/j.issn.1003-3998.2017.02.007 |
|
11 |
Garofalo N , Vassilev D . Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type. Duke Math J, 2001, 106, 411- 448
doi: 10.1215/S0012-7094-01-10631-5 |
12 |
Franchi B , Gutiérrez C E , Wheeden R L . Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm Partial Differential Equations, 1994, 19, 523- 604
doi: 10.1080/03605309408821025 |
13 |
Monti R , Morbidelli D . Kelvin transform for Grushin operators and critical semilinear equations. Duke Math J, 2006, 131, 167- 202
doi: 10.1215/S0012-7094-05-13115-5 |
14 | Monticelli D D . Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators. J Eur Math Soc, 2010, 12, 611- 654 |
15 |
Yu X H . Liouville type theorem for nonlinear elliptic equation involving Grushin operators. Commun Contemp Math, 2015, 17, 1450050
doi: 10.1142/S0219199714500503 |
16 |
Duong A T , Phan Q H . Liouville type theorem for nonlinear elliptic system involving Grushin operator. J Math Anal Appl, 2017, 454, 785- 801
doi: 10.1016/j.jmaa.2017.05.029 |
17 | Zhao X J , Wang X H , Yu X H . Morse index and Liouville type theorems for elliptic equation involving Grushin operator. Sci China: Math, 2014, 44, 711- 718 |
18 |
Cowan C . Liouville theorems for stable Lane-Emden systems with biharmonic problems. Nonlinearity, 2013, 26, 2357- 2371
doi: 10.1088/0951-7715/26/8/2357 |
19 |
Montenegro M . Minimal solutions for a class of elliptic systems. Bull London Math Soc, 2005, 37, 405- 416
doi: 10.1112/S0024609305004248 |
20 | Hu L G . A monotonicity formula and Liouville-type theorems for stable solutions of the weighted elliptic system. Adv Differential Equations, 2017, 22, 49- 76 |
21 |
Cheng Z , Huang G G , Li C M . On the Hardy-Littlewood-Sobolev type systems. Commun Pure Appl Anal, 2016, 15, 2059- 2074
doi: 10.3934/cpaa.2016027 |
[1] | Hongli Qian,Xiaotao Huang. A Symmetry Result for a Class of p-Laplace Involving Baouendi-Grushin Operators via Constrained Minimization Method [J]. Acta mathematica scientia,Series A, 2020, 40(3): 725-734. |
[2] | Jianling Zhang. Multi-Samples Testing for Second Stochastic Dominance Against Unrestricted Alternative [J]. Acta mathematica scientia,Series A, 2020, 40(1): 212-220. |
[3] | Tang Sufang. Liouville Type Theorem for an Integral System on a Half Space [J]. Acta mathematica scientia,Series A, 2017, 37(4): 647-662. |
[4] | Lu Pingping, Hu Lianggen. A Note to Monotonicity Formula for Stable Solutions of the Weighted Elliptic System [J]. Acta mathematica scientia,Series A, 2017, 37(4): 698-705. |
[5] | Hu Lianggen. Liouville Type Theorems of Solutions for the Nonlinear Hénon Equations [J]. Acta mathematica scientia,Series A, 2016, 36(4): 639-648. |
[6] | ZHENG Shen-Zhou, LU Han-Fang. Liouville Theorems on Subelliptic Quasilinear Equations in Unbounded Exterior Domain [J]. Acta mathematica scientia,Series A, 2012, 32(4): 644-653. |
[7] | Hu Zejun. A Liouville Theorem for a Class of Nonlinear Elliptic Equations [J]. Acta mathematica scientia,Series A, 2000, 20(4): 474-479. |
|