Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (2): 527-539.
Previous Articles Next Articles
Shuangming Wang1,2,*(),Xingman Fan2,Mingjun Zhang2,Junrong Liang2
Received:
2018-11-14
Online:
2020-04-26
Published:
2020-05-21
Contact:
Shuangming Wang
E-mail:wsm@lzufe.edu.cn
Supported by:
CLC Number:
Shuangming Wang,Xingman Fan,Mingjun Zhang,Junrong Liang. The Dynamics of an SEIR Epidemic Model with Time-Periodic Latent Period[J].Acta mathematica scientia,Series A, 2020, 40(2): 527-539.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究. 北京: 科学出版社, 2004: 42- 56 |
Ma Z E , Zhou Y C , Wang W D , et al. Mathematics Modeling and Research of Infectious Disease Dynamics. Beijing: Science Press, 2004: 42- 56 | |
2 | Brauer F , Castillo-Chavez C . Mathematical Models in Population Biology and Epidemiology. New York: Springer, 2012: 1- 60 |
3 | 陈兰荪, 孟新柱, 焦建军. 生物动力学. 北京: 科学出版社, 2009: 150- 440 |
Chen L S , Meng X Z , Jiao J J . Biodynamics. Beijing: Science Press, 2009: 150- 440 | |
4 | Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2017: 1- 116 |
5 | 王宾国, 邵昶, 李海萍. 仓室传染病模型基本再生数的发展简介. 兰州大学学报(自然科学版), 2016, 52 (3): 380- 384 |
Wang B G , Shao C , Li H P . Basic repoduction numbers for compartmetal epidemic models. Journal of Lanzhou University (Natural Sciences), 2016, 52 (3): 380- 384 | |
6 |
Liang X , Zhang L , Zhao X Q . Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J Dynam Differential Equations, 2019, 31, 1247- 1278
doi: 10.1007/s10884-017-9601-7 |
7 |
Zhao X Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dynam Differential Equations, 2017, 29, 67- 82
doi: 10.1007/s10884-015-9425-2 |
8 |
Bai Z G , Peng R , Zhao X Q . A reaction-diffusion malaria model with seasonality and incubation period. J Math Biol, 2018, 77, 201- 228
doi: 10.1007/s00285-017-1193-7 |
9 |
Lou Y J , Zhao X Q . A theoretical aproach to understanding population dynamics with seasonal developmental durations. J Nonlinear Sci, 2017, 27, 573- 603
doi: 10.1007/s00332-016-9344-3 |
10 | 刘胜强, 陈兰荪. 阶段结构种群生物模型与研究. 北京: 科学出版社, 2010: 8- 15 |
Liu S Q , Chen L S . Population Biological Model with Stage Structure Population and Research. Beijing: Science Press, 2010: 8- 15 | |
11 |
Zhang L , Wang Z C , Zhao X Q . Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differential Equations, 2015, 258 (9): 3011- 3036
doi: 10.1016/j.jde.2014.12.032 |
12 | 王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究. 应用数学和力学, 2018, 39 (2): 226- 238 |
Wang S M , Zhang M J , Fan X M . Spatial dynamics of periodic reaction-diffusion epidemic models with delay and logistic growth. Applied Mathematics and Mechanics (Chinese Edition), 2018, 39 (2): 226- 238 | |
13 | Hay S I , Graham A , Rogers D J . Global Mapping of Infectious Diseases:Methods, Examples and Emerging Applications. London: Academic Press, 2006 |
14 |
Paaijmans K P , Read A F , Thomas M B . Understanding the link between malaria risk and climate. Proc Nat Acad Sci USA, 2009, 106 (33): 13844- 13849
doi: 10.1073/pnas.0903423106 |
15 | 王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究. 兰州大学学报:自然科学版, 2013, (4): 535- 540 |
Wang Z C , Wang S M . Spatial dynamics of a class of delayed nonlocal reaction-diffusion models with a time period. Journal of Lanzhou University (Natural Sciences), 2013, (4): 535- 540 | |
16 |
Magal P , Zhao X Q . Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37 (1): 251- 275
doi: 10.1137/S0036141003439173 |
17 | Lou Y J , Zhao X Q . Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin Dyn Syst Ser B, 2009, 12, 169- 186 |
18 | Posny D , Wang J . Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl Math Comput, 2014, 242, 473- 490 |
[1] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[2] | Li Yaohong, Tian Shoufu. Persistence Property and Propagation Speed for the mCH-CH Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 609-620. |
[3] | Han Mengjie, Liu Junli, Zhang Tailei. Global Dynamics Analysis of Anthrax Transmission Model Based on Two Kinds of Vectors [J]. Acta mathematica scientia,Series A, 2024, 44(1): 227-245. |
[4] | Li Dan,Wei Fengying,Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1595-1606. |
[5] | Cai Senlin,Zhou Shouming,Chen Rong. On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1197-1120. |
[6] | Wu Peng,Wang Xiunan,He Zerong. Dynamical Analysis of an Age-Space Structured HIV/AIDS Model with Homogeneous Dirichlet Boundary Condition [J]. Acta mathematica scientia,Series A, 2023, 43(3): 970-984. |
[7] | Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860. |
[8] | Zhanping Ma,Haifeng Huo,Hong Xiang. Dynamics and Patterns for a Diffusive Leslie-Gower Predator-Prey Model with Michaelis-Menten Type Harvesting in Prey [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1575-1591. |
[9] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[10] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[11] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[12] |
Liang Zhiqing;Chen Lansun.
Stability of Periodic Solution for a Discrete Leslie Predator-prey System [J]. Acta mathematica scientia,Series A, 2006, 26(4): 634-640. |
[13] | Wei Gengping; Shen Jianhua. The Persistence of Nonoscillatory Solutions of Difference Equations Under Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 595-600. |
[14] | Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410-420. |
[15] |
WEN Xian-Zhang.
The Uniform Persistence of PredatorPrey Systems with Delays [J]. Acta mathematica scientia,Series A, 2003, 23(1): 96-105. |
|