Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (3): 545-555.
Zhaojun Pang1,Dansheng Yu1,*(),Ping Zhou2
Received:
2019-05-15
Online:
2020-06-26
Published:
2020-07-15
Contact:
Dansheng Yu
E-mail:dsyu@hznu.edu.cn
CLC Number:
Zhaojun Pang,Dansheng Yu,Ping Zhou. On Approximation by Bernstein-Durrmeyer-Type Operators in Movable Compact Disks[J].Acta mathematica scientia,Series A, 2020, 40(3): 545-555.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Gal S G . Approximation by complex genuine Durrmeyer type polynomials in compact disks. Appl Math Comput, 2010, 217, 1913- 1920 |
2 | Gal S G . Approximation by Complex Bernstein and Convolution Type Operstors. Singapore:World Scientific, 2009 |
3 | Gal S G . Overconvergence in Complex Approximation. New York:Springer, 2013 |
4 |
Gal S G . Voronovskaja's theorem and iterations for complex Bernstein polynomials in compact disks. Mediterr Math J, 2008, 5, 253- 272
doi: 10.1007/s00009-008-0148-z |
5 |
Gal S G . Approximation by complex Bernstein-Kantorovich and Stancu-Kanrorovich polynomials and their iterates in compact disks. Appl Math Comput, 2009, 58, 734- 743
doi: 10.1016/j.camwa.2009.04.009 |
6 | Gal S G . Approximation by complex Bernstein-Durrmeyer polynomials with jacobi weights in compact disks. Math Balk, 2010, 24, 103- 110 |
7 |
Gal S G , Gupta V . Approximation by a Durrmeyer-Stancu-type operator in compact disks. Ann Univ Ferrara, 2011, 57, 261- 274
doi: 10.1007/s11565-011-0124-6 |
8 |
Gal S G , Gupta V . Approximation by complex Lupas-Durrmeyer polynomials based on Polya distribution. Banach J Math Anal, 2016, 10, 209- 221
doi: 10.1215/17358787-3345203 |
9 |
Gupta V . Approximation properties by Bernstein-Durrmeyer type operators. Complex Anal Oper Theory, 2013, 7, 363- 374
doi: 10.1007/s11785-011-0167-9 |
10 |
Gupta V . Direct estimates for a new general family of Durrmeyer type operators. Bollettino dell'Unione Matematica Italiana, 2015, 7, 279- 288
doi: 10.1007/s40574-014-0016-7 |
11 | Gupta V , Agarwal R P . Convergence Estimates in Approximation Theory. Switzerland:Springer, 2014 |
12 | Gupta V . On approximation properties of a new type Bernstein-Durrmeyer operators. Math Slovaca, 2015, 65, 1107- 1122 |
13 |
Mahmudov N I . Approximation by Bernstein-Durrmeyer-type operators in compact disks. Appl Math Letter, 2011, 24, 1231- 1238
doi: 10.1016/j.aml.2011.02.014 |
14 | Mahmudov N I . Approximation by genuine q-Bernstein-Durrmeyer polynomials in compact disks. Hacet J Math Stat, 2011, 40, 77- 89 |
15 |
Mahmudov N I , Gupta V . Approximation by genuine Durrmeyer-Stancu polynomials in compact disks. Math Comput Modelling, 2012, 55, 278- 285
doi: 10.1016/j.mcm.2011.06.018 |
16 | Lorentz G G . Bernstein Polynomials. 2nd edn. New York: Chelsea, 1986 |
17 |
Jiang B , Yu D S . On Approximation by Bernstein-Stancu polynomials in movable compact disks. Result Math, 2017, 72, 1535- 1543
doi: 10.1007/s00025-017-0669-5 |
18 | Jiang B, Yu D S. Approximation by Durrmeyer type Bernstein-Stancu polynomials in movable compact disks. Result Math, 2019, 74: Article 28 |
19 |
Jiang B , Yu D S . On approximation by Stancu type Bernstein-Schurer polynomials in compact disks. Result Math, 2017, 72, 1623- 1638
doi: 10.1007/s00025-017-0740-2 |
20 | Ren M Y, Zeng X M. Approximation by a kind of complex modified q-Durrmeyer type operators in compact disks. J Inequal Appl, 2012, 2012: Article 212 |
21 | Ren M Y, Zeng X M, Zeng L. Approximation by complex Durrmeyer-Stancu type operators in compact disks. J Inequal Appl, 2013, 2012: Article 442 |
[1] | Ji Lei, Wei Mingquan, Yan Dunyan. Characterizations of the Weak Boundedness for Commutators of Hardy-Type Operators on Central Morrey Spaces [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1013-1022. |
[2] | Lü Jun. The Study on Spectral Structure of Planar Self-Similar Measures with Four Element Digit Sets [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1023-1040. |
[3] |
Wen Xinqi, Yuan Cheng.
A Toeplitz-Type Operator on Hardy Space |
[4] | Shao Xukui, Wang Suping, Tao Shuangping. Variable Kernel Marcinkiewicz Integral and its Commutator on the Nonhomogeneous Variable Exponent Herz-Morrey-Hardy Space [J]. Acta mathematica scientia,Series A, 2025, 45(3): 653-664. |
[5] | Li Ziyan, Tao Xiangxing. Plancherel-Pôlya Type Characterization of Product Weighted Besov and Product Weighted Triebel-Lizorkin Spaces Based on Wavelet Basis [J]. Acta mathematica scientia,Series A, 2025, 45(3): 665-686. |
[6] | Liu Hongmei, Li Yang. Reduction and Summation Formulas for Two Types of Kampé de Fériet Series [J]. Acta mathematica scientia,Series A, 2025, 45(1): 136-152. |
[7] | Hu Keqi, Zhang Qingcai. Some Properties of Quasi-Periodic Functions and Their Applications [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1415-1425. |
[8] |
Zhang Jie, Sun Yiming, Liu Yongping.
EC-tractability of Multivariate |
[9] |
Wang Yaoyao, Lv Meichuan, Li Wenming.
Two-Weight Inequalities for |
[10] | Liu Hua, Basma Al-Shutnawi. On Convergence Sets of Power Series with Holomorphic Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(3): 563-574. |
[11] | Sun Xiaochun, Wu Yulian, Xu Gaoting. Global Well-Posedness for the Fractional Navier-Stokes Equations with the Coriolis Force [J]. Acta mathematica scientia,Series A, 2024, 44(3): 737-745. |
[12] | Ku Fuli. Compact Commutators of $m$-Linear Calderón-Zygmund Operators on Generalized Morrey Spaces [J]. Acta mathematica scientia,Series A, 2024, 44(2): 286-297. |
[13] | Cheng Xin, Zhang Jing. The Boundedness for Multilinear Commutators of One-Sided Operators on Triebel-Lizorkin Spaces [J]. Acta mathematica scientia,Series A, 2024, 44(1): 50-59. |
[14] | Bao Qi, Wang Miaokun, Chu Yuming. $q$-Ramanujan Asymptotic Formula and $q$-Ramanujan $R$-function [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1659-1666. |
[15] | Xiong Ting. Spectrality of Moran Measures with Three-Element Didit Sets [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1814-1830. |
|