Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (4): 1053-1060.
Previous Articles Next Articles
Jian Liu(),Zhixin Zhang*(
),Wei Jiang(
)
Received:
2019-01-31
Online:
2020-08-26
Published:
2020-08-20
Contact:
Zhixin Zhang
E-mail:1916869562@qq.com;zhang_zhi_x@sina.com;jiangwei@ahu.edu.cn
Supported by:
CLC Number:
Jian Liu,Zhixin Zhang,Wei Jiang. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay[J].Acta mathematica scientia,Series A, 2020, 40(4): 1053-1060.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999 |
2 | Oldham K B , Spanier J . The Fractional Calculus. New York: Academic Press, 1974 |
3 | Samko S G , Killbas A A , Marichev O I . Fractional Integrals and Derivatives:Theory and Applications. Amsterdam: Gordon and Breach Science Publisher, 1993 |
4 | Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science, 2006 |
5 | Miller K S , Ross B . An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons, 1993 |
6 | Diethelm V . The Analysis of Fractional Differential Equations. New York: Springer, 2010 |
7 | Lakshmikantham V , Leela S , Vasundhara D J . Theory of Fractional Dynamic Systems. Cambridge: Cambridge Academic Publishers, 2009 |
8 | Li Y , Chen Y Q , Podlubny I . Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45, 1965- 1969 |
9 | Li Y , Chen Y Q , Podlubny I . Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59, 1810- 1821 |
10 | Liu S , Li X Y , Jiang W , Zhou X F . Mittag-Leffler stability of nonlinear fractional neutral singular systems. Commun Nonlinear Sci Numer Simul, 2012, 17, 3961- 3966 |
11 | Liu S , Jiang W , Li X Y , Zhou X F . Lyapunov stability analysis of fractional nonlinear systems. Appl Math Lett, 2016, 51, 13- 19 |
12 | Yu J M , Hu H , Zhou S B , Lin X R . Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems. Automatica, 2013, 49, 1798- 1803 |
13 | Li H L , Hu C , Jiang Y L , et al. Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls. Neurocomputing, 2016, 214, 233- 241 |
14 | Ren F L , Cao F , Cao J D . Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks. Neurocomputing, 2015, 160, 185- 190 |
15 | Wan L G , Wu A L . Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractionalorder neural networks. Neurocomputing, 2018, 315, 272- 282 |
16 | Zhang X X , Niu P F , Ma Y P , et al. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. Neural Networks, 2017, 94, 67- 75 |
17 | Wu H Q , Zhang X X , Xue S H , et al. LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses. Neurocomputing, 2016, 193, 148- 154 |
18 | Yang X J , Li C D , Song Q K , et al. Mittag-Leffler stability analysis on variable-time impulsive fractionalorder neural networks. Neurocomputing, 2016, 207, 276- 286 |
19 | Ivanka S . Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn, 2014, 77, 1251- 1260 |
20 | Yang X J , Li C D , Huang T W , Song Q K . Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl Math Comput, 2017, 293, 416- 422 |
21 | Arena P , Fortuna L , Porto L . Chaotic behavior in noninteger-order cellular neural networks. Physical Review E, 2000, 61 (1): 776- 781 |
22 | Kaslik E , Sivasundaram S . Nonlinear dynamics and chaos in fractional-order neural networks. Neural Networks, 2012, 32, 245- 256 |
23 | Huang X , Zhao Z , Wang Z , Li Y X . Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing, 2012, 94, 13- 21 |
24 | Ben M A , Boucenna D , Hammami M A . Existence and stability results for generalized fractional differential equations. Acta Mathematica Scientia, 2020, 40B (1): 141- 154 |
25 | 王春. 一类分数阶系统的稳定性和Laplace变换. 数学物理学报, 2019, 39A (1): 49- 58 |
Wang C . Stability and Laplace transformation of a class of fractional systems. Acta Math Sci, 2019, 39A (1): 49- 58 |
|