Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (4): 1072-1082.
Previous Articles Next Articles
Received:
2020-02-21
Online:
2020-08-26
Published:
2020-08-20
Supported by:
CLC Number:
Liang Wu. Hurst Parameter Under Finite Second Moment and Under Heavy Tails[J].Acta mathematica scientia,Series A, 2020, 40(4): 1072-1082.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Hurst H E . Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 1951, 116, 770- 808 |
2 |
Peng C K , Buldyrev S V , Havlin S , et al. Mosaic organization of DNA nucleotides. Physical Review E, 1994, 49 (2): 1685
doi: 10.1103/PhysRevE.49.1685 |
3 |
Flandrin P . Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory, 1992, 38 (2): 910- 917
doi: 10.1109/18.119751 |
4 |
Abry P , Helgason H , Pipiras V . Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the Hurst parameter. Lithuanian Mathematical Journal, 2011, 51 (3): 287- 302
doi: 10.1007/s10986-011-9126-4 |
5 |
Wu L , Ding Y . Estimation of self-similar Gaussian fields using wavelet transform. International Journal of Wavelets, Multiresolution and Information Processing, 2015, 13 (6): 1550044
doi: 10.1142/S0219691315500447 |
6 | Wu L , Ding Y . Wavelet-based estimator for the Hurst parameters of fractional Brownian sheet. Acta Mathematica Scientia, 2017, 37B (1): 205- 222 |
7 | Wu L , Ding Y . Wavelet-based estimations of fractional Brownian sheet:Least squares versus maximum likelihood. Journal of Computational and Applied Mathematics, 2020, 371 (C): 112609 |
8 |
Ramírez-Cobo P , Lee K S , Molini A , et al. A wavelet-based spectral method for extracting self-similarity measures in time-varying two-dimensional rainfall maps. Journal of Time Series Analysis, 2011, 32 (4): 351- 363
doi: 10.1111/j.1467-9892.2011.00731.x |
9 |
Nicolis O , Ramírez-Cobo P , Vidakovic B . 2D wavelet-based spectra with applications. Computational Statistics and Data Analysis, 2011, 55 (1): 738- 751
doi: 10.1016/j.csda.2010.06.020 |
10 |
Biermé H , Richard F . Estimation of anisotropic gaussian fields through Radon transform. ESAIM:Probability and Statistics, 2008, 12, 30- 50
doi: 10.1051/ps:2007031 |
11 |
Roux S G , Clausel M , Vedel B , et al. Self-similar anisotropic texture analysis:The hyperbolic wavelet transform contribution. IEEE Transactions on Image Processing, 2013, 22 (11): 4353- 4363
doi: 10.1109/TIP.2013.2272515 |
12 | Wang L . Memory parameter estimation for long range dependent random fields. Statistics & Probability Letters, 2009, 79 (21): 2297- 2306 |
13 |
Guo H , Lim C Y , Meerschaert M M . Local Whittle estimator for anisotropic random fields. Journal of Multivariate Analysis, 2009, 100 (5): 993- 1028
doi: 10.1016/j.jmva.2008.10.002 |
14 |
Wang L , Wang J . Wavelet estimation of the memory parameter for long range dependent random fields. Statistical Papers, 2014, 55 (4): 1145- 1158
doi: 10.1007/s00362-013-0558-2 |
15 | Samorodnitsky G . Stochastic Processes and Long Range Dependence. Switzerland: Springer, 2016 |
16 | 吴量.分数阶高斯随机场中的长记忆性研究[D].北京:中国科学院大学, 2016 |
Wu L. Long Memory in Fractional Gaussian Random Fields[D]. Beijing: University of Chinese Academy of Sciences, 2016 | |
17 | Jakubowski A . The Skorokhod space in functional convergence:a short introduction. Abstracts for the Internation Conference Skorokhod Space, 2007, 50, 11- 18 |
18 | Nourdin I . Selected Aspects of Fractional Brownian Motion. Milan: Springer, 2012 |
19 | Li W , Yu C , Carriquiry A , et al. The asymptotic behavior of the R/S statistic for fractional Brownian motion. Statistics & Probability Letters, 2011, 81 (1): 83- 91 |
20 |
Hall P , HäRdle W , Kleinow T , et al. Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient. Statistical Inference for Stochastic Processes, 2000, 3 (3): 263- 276
doi: 10.1023/A:1009921413616 |
21 | Beran J . Statistics for Long-Memory Processes. New York: CRC Press, 1994 |
22 |
Galambos J , Seneta E . Regularly varying sequences. Proceedings of the American Mathematical Society, 1973, 41 (1): 110- 116
doi: 10.1090/S0002-9939-1973-0323963-5 |
[1] |
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng.
Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter |
[2] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[3] | Yi Ding,Jingjun Guo. Pricing Asian Options Under Time-Changed Mixed Fractional Brownian Motion with Transactions Costs [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1135-1146. |
[4] | Liping Xu,Zhi Li. Transportation Inequalities for Mixed Stochastic Differential Equations [J]. Acta mathematica scientia,Series A, 2021, 41(1): 227-236. |
[5] | Liheng Sang,Zhenlong Chen,Xiaozhen Hao. Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2020, 40(3): 796-810. |
[6] | Qikang Ran. SDE Driven by Fractional Brown Motion and Their Coefficients are Locally Linear Growth [J]. Acta mathematica scientia,Series A, 2020, 40(1): 200-211. |
[7] | Zhaoqiang Yang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1514-1531. |
[8] | Jing Cui,Qiuju Liang,Nana Bi. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion [J]. Acta mathematica scientia,Series A, 2019, 39(3): 570-581. |
[9] | LIU Guang-Ying, TANG Jia-Shan, ZHANG Xin-Sheng. Asymptotic Properties for Power Variations of Fractional Integral Processes with Jumps [J]. Acta mathematica scientia,Series A, 2014, 34(4): 925-937. |
[10] | ZHANG Hua-Yue, CHEN Wan-Hua, QU Li-An. Dynamic Below-Target Semi-Variance Risk Measure in a Fractional |Black-Scholes Market [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1674-1682. |
[11] | Liu Shaoyue; Yang Xiangqun. Optimal Portfolio in a Fractional Black-Scholes Model with Arbitrary Hurst Parameter [J]. Acta mathematica scientia,Series A, 2008, 28(4): 742-746. |
|