Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (4): 983-992.
Previous Articles Next Articles
Received:
2018-11-30
Online:
2020-08-26
Published:
2020-08-20
Supported by:
CLC Number:
Yonghui Zhou. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations[J].Acta mathematica scientia,Series A, 2020, 40(4): 983-992.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Chern I L , Mei M , Yang X F , Zhang Q F . Stability of non-monotone critical traveling waves for reactiondiffusion equations with time-delay. J Differential Equations, 2015, 259 (4): 1503- 1541
doi: 10.1016/j.jde.2015.03.003 |
2 | Gourley S A , Wu J . Delayed nonlocal diffusive system in biological invasion and disease spread. Fields Inst Commun, 2006, 48, 137- 200 |
3 |
Khusainov D Ya , Ivanov A F , Kovarzh I V . Solution of one heat equation with delay. Nonlinear Oscillasions, 2009, 12, 260- 282
doi: 10.1007/s11072-009-0075-3 |
4 |
Lin C K , Lin C T , Lin Y , Mei M . Exponential stability of nonmonotone traveling waves for Nicholson's Blowfilws equation. SIAM J Math Anal, 2014, 46, 1053- 1084
doi: 10.1137/120904391 |
5 |
Mei M , So J W H , Li M Y , Shen S S . Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion. Proc Roy Soc Edinburgh Sect A, 2004, 134, 579- 594
doi: 10.1017/S0308210500003358 |
6 |
Mei M , Lin C K , Lin C T , So J W H . Traveling wavefronts for time-delayed reaction-diffusion equation:(Ⅰ) local nonlinearity. J Differential Equations, 2009, 247, 495- 510
doi: 10.1016/j.jde.2008.12.026 |
7 |
Mei M , Lin C K , Lin C T , So J W H . Traveling wavefronts for time-delayed reaction-diffusion equation:(Ⅱ) nonlocal nonlinearity. J Differential Equations, 2009, 247, 511- 529
doi: 10.1016/j.jde.2008.12.020 |
8 | Mei M , Wang Y . Remark on stability of traveling waves for nonlocal Fisher-KPP equations. Int J Num Anal Model, 2011, B (2): 379- 401 |
9 |
Mei M , Ou C , Zhao X Q . Global stability of monostable traveling waves for nonlocal time-delayed reactiondiffusion equations. SIAM J Math Anal, 2010, 42, 2762- 2790
doi: 10.1137/090776342 |
10 | Mei M , Zhang K J , Zhang Q F . Global stability of traveling waves with oscillations for Nicholson's blowflies equation. Int J Numer Anal Model, 2019, 16 (3): 375- 397 |
11 |
Fife P C , Mcleod J B . The approach of solutions nonlinear diffusion equations to traveling front soutions. Arch Ration Mech Anal, 1977, 65, 335- 361
doi: 10.1007/BF00250432 |
12 | Wang X H , Lv G Y . Stability of traveling wave fronts for nonlocal reaction diffusion equations with delay. Acta Mathematica Sinica (Chinese Series), 2015, 1, 13- 28 |
13 |
Xu Z Q , Xiao D M . Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays. J Differential Equations, 2016, 260, 268- 303
doi: 10.1016/j.jde.2015.08.049 |
14 | Yang Z X , Zhang G B . Global stability of traveling wavefronts for nonlocal reaction-diffusion equations with time delay. Acta Mathematica Scientia, 2018, 38B (1): 289- 302 |
15 | Zhou Y H , Yang Y R , Liu K P . Stability of traveling waves in a population dynamic model with delay and quiescent stage. Acta Mathematica Scientia, 2018, 38B (3): 1001- 1024 |
16 | Volpert V A , Volpert A I . Locations of spectrum and stability of solutions for monotone parabolic systems. Adv Diffrential Equations, 1997, 2, 811- 830 |
[1] | Liu Lili, Wang Honggang, Li Yazhi. A Generalized HBV Diffusive Model with DNA-Containing Capsids and Cell-Cell Infection [J]. Acta mathematica scientia,Series A, 2023, 43(2): 604-624. |
[2] | Jiang Li,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics Analysis of a Stochastic Glucose-Insulin Model [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1937-1949. |
[3] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[4] | Xiaojie Jing, Aimin Zhao, Guirong Liu. Global Stability of a Measles Epidemic Model with Partial Immunity and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2019, 39(4): 909-917. |
[5] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[6] | YE Hui, CAI Dong-Han. Global Attractivity in a Periodic Nicholson's Blowflies Model [J]. Acta mathematica scientia,Series A, 2013, 33(6): 1013-1021. |
[7] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[8] | CUI Cheng, WANG Xiao, GAO Fei, LIU An-Ping. Global Stability of Periodic Solution and Almost Periodic Solution of Price Cooperating Model with Time Lag [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1718-1729. |
[9] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[10] | Wang Yuquan; Liu Laifu. On the Dynamics of a Food Chain with Monod-Haldane Functional Response [J]. Acta mathematica scientia,Series A, 2007, 27(1): 79-089. |
[11] | Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410-420. |
[12] | CENG Zhi-Gang, LIAO Xiao-Cuan. Global Stability for Neural Networks with Unbouned Time Varying Delays [J]. Acta mathematica scientia,Series A, 2005, 25(5): 621-626. |
[13] | YUAN San-Ling, MA Zhi-En, HAN Mao-An. Global Stability on an SIS Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2005, 25(3): 349-356. |
[14] | SONG Xin-Yu, XIAO Yan-Ni, CHEN Lan-Sun. Stability and Hopf Bifurcation of an Eco epidemiological Model with Delays [J]. Acta mathematica scientia,Series A, 2005, 25(1): 57-66. |
|