| 1 | Bi E , Feng Z , Tu Z . Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann Glob Anal Geom, 2016, 49: 349- 359 |
| 2 | Calabi E . Isometric imbedding of complex manifolds. Ann of Math, 1953, 58: 1- 23 |
| 3 | Cheng X L , Niu Y Y . Submanifolds of Cartan-Hartogs domains and complex Euclidean spaces. J Math Anal Appl, 2017, 452 (2): 1262- 1268 |
| 4 | Cheng X L , Di Scala A , Yuan Y . K?ahler submanifolds and the Umehara algebra. Int J Math, 2017, 28 (4): 1750027 |
| 5 | Cheng X L, Hao Y H. Non-relativity of K?ahler manifold and complex space forms. 2005, arXiv: 2005.03208 |
| 6 | Chern S S . On Einstein hypersurfaces in a K?ahler manifold of constant bisectional curvature. J Differ Geom, 1967, 1: 21- 31 |
| 7 | Di Scala A J , Loi A . K?ahler maps of Hermitian symmetric spaces into complex space forms. Geom Dedicata, 2007, 125: 103- 113 |
| 8 | Di Scala A J , Loi A . K?ahler manifolds and their relatives. Ann Sc Norm Super Pisa Cl Sci, 2010, 9 (5): 495- 501 |
| 9 | Di Scala A J , Ishi H , Loi A . K?ahler immersions of homogeneous K?ahler manifolds into complex space forms. Asian J of Math, 2012, 16 (3): 479- 488 |
| 10 | Hao Y H , Wang A . The Bergman kernels of generalized Bergman-Hartogs domains. J Math Anal Appl, 2015, 429 (1): 326- 336 |
| 11 | Huang X, Yuan Y. Submanifolds of Hermitian symmetric spaces//Baklouti A, Kacimi A, Kallel S, Mir N. Analysis and Geometry. Heidelberg: Springer, 2015: 197-206 |
| 12 | Hulin D . Sous-variétés complexes d'Einstein de l'espace projectif (France). Bull Soc Math, 1996, 124: 277- 298 |
| 13 | Hulin D . K?ahler-Einstein metrics and projective embeddings. J Geom Anal, 2000, 10 (3): 525- 528 |
| 14 | Ishi H , Park J D , Yamamori A . Bergman kernel function for Hartogs domains over bounded homogeneous domains. J Geom Anal, 2017, 27: 1703- 1736 |
| 15 | Kim H , Ninh V T , Yamamori A . The automorphism group of a certain unbounded non-hyperbolic domain. J Math Anal Appl, 2014, 409 (2): 637- 642 |
| 16 | Kim H , Yamamori A . An application of a Diederich-Ohsawa theorem in characterizing some Hartogs domains. Bull Sci Math, 2015, 139 (7): 737- 749 |
| 17 | Loi A , Zedda M . K?ahler-Einstein submanifolds of the infnite dimensional projective space. Math Ann, 2011, 350 (1): 145- 154 |
| 18 | Loi A , Mossa R . Some remarks on homogeneous K?ahler manifolds. Geom Ded, 2015, 179: 377- 383 |
| 19 | Loi A . Holomorphic maps of Hartogs domains in complex space forms. Riv Mat Univ Parma, 2002, 7: 103- 113 |
| 20 | Loi A , Zedda M . K?ahler Immersions of K?ahler Manifolds into Complex Space Forms. Cham: Springer, 2018 |
| 21 | Mossa R . A bounded homogeneous domain and a projective manifold are not relatives. Riv Mat Univ Parma, 2013, 4 (1): 55- 59 |
| 22 | Su G , Tang Y Y , Tu Z H . K?ahler submanifolds of the symmetrized polydisc. C R Acad Sci Paris Ser I, 2018, 356: 387- 394 |
| 23 | Tsukada K . Einstein-K?ahler submanifolds with codimension two in a complex space form. Math Ann, 1986, 274: 503- 516 |
| 24 | Umehara M . Einstein-K?ahler submanifolds of complex linear or hyperbolic space. Tohoku Math J, 1987, 39 (3): 385- 389 |
| 25 | Umehara M . K?ahler submanifolds of complex space forms. Tokyo J Math, 1987, 10 (1): 203- 214 |
| 26 | Zhao J , Wang A , Hao Y H . On the holomorphic automorphism group of the Bergman-Hartogs domain. Int J Math, 2015, 26 (8): 1550056 |
| 27 | Zedda M. K?ahler Immersions of K?ahler-Einstein Manifolds into Infinite Dimensional Complex Space Form[D]. Cagliari: Università degli Studi di Cagliari, 2009 |
| 28 | Zedda M. Strongly not relative K?ahler manifolds. Complex Manifolds, 2016, arXiv: 1608.03163 |