| 1 | 郑祖庥. 分数微分方程的发展和应用. 徐州师范大学学报, 2008, 26 (2): 1- 10 |
| 1 | Zheng Z X . On the developments and applications of fractional differential equations. J of Xuzhou Normal Univ, 2008, 26 (2): 1- 10 |
| 2 | Kilbas A , Srivastava H , Trujillo J . Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol 204. Amsterdam: Elsevier Science, 2006 |
| 3 | Podlubny I . Fractional Differential Equations. Mathematics in Science and Engineering, Vol 198. San Diego: Academic Press, 1999 |
| 4 | Samko S , Kilbas A , Marichev O . Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach, 1993 |
| 5 | 程金发. 分数阶差分方程理论. 南强丛书第五辑 厦门大学出版社, 2011 |
| 5 | Cheng J F . The Theory of Fractional Order Difference Equations. Xiamen: Xiamen University Press, 2011 |
| 6 | Goodrich C S , Peterson A C . Discrete Fractional Calculus. New York: Springer, 2015 |
| 7 | Goodrich C S . On a first-order semipositone discrete fractional boundary value problem. Archiv der Mathematik, 2012, 99 (6): 509- 518 |
| 8 | Xu J , Goodrich C S , Cui Y . Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A: Matemáticas, 2019, 113 (2): 1343- 1358 |
| 9 | Goodrich C S . Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions. Journal of Difference Equations and Applications, 2015, 21 (5): 437- 453 |
| 10 | Goodrich C S . On semipositone discrete fractional boundary value problems with non-local boundary conditions. Journal of Difference Equations and Applications, 2013, 19 (11): 1758- 1780 |
| 11 | Goodrich C S . On discrete sequential fractional boundary value problems. Journal of Mathematical Analysis and Applications, 2012, 385 (1): 111- 124 |
| 12 | Atici Ferhan M , Senguel Sevgi . Modeling with fractional difference equations. J Math Anal Appl, 2010, 369 (1): 1- 9 |
| 13 | Cheng J. On the definitions of fractional sum and difference on non-uniform lattices. 2019, arXiv: 1910.05130 |
| 14 | 徐家发. 具有半正非线性项的分数阶差分方程组边值问题的正解. 数学物理学报, 2020, 40A (1): 132- 145 |
| 14 | Xu J F . Positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities. Acta Mathematica Scientia, 2020, 40A (1): 132- 145 |
| 15 | 王金华, 向红军. 一类分数阶p-Laplacian差分方程边值问题正解的存在性. 高校应用数学学报, 2018, 33 (1): 67- 78 |
| 15 | Wang J H , Xiang H J . Research of solutions for a boundary value problem of fractional difference equation with p-Laplacian operator. Applied Mathematics-A Journal of Chinese Universities, 2018, 33 (1): 67- 78 |
| 16 | Zhao Y , Sun S , Zhang Y . Existence and uniqueness of solutions to a fractional difference equation with p-Laplacian operator. Journal of Applied Mathematics and Computing, 2017, 54 (1/2): 183- 197 |
| 17 | Cheng W , Xu J , O'Regan D , Cui Y . Positive solutions for a nonlinear discrete fractional boundary value problem with a p-Laplacian operator. Journal of Applied Analysis and Computation, 2019, 9 (5): 1959- 1972 |
| 18 | Lv W. Existence of solutions for discrete fractional boundary value problems with a p-Laplacian operator. Advances in Difference Equations, 2012, Article ID: 163 |
| 19 | Lv W. Solvability for discrete fractional boundary value problems with a p-Laplacian operator. Discrete Dynamics in Nature and Society, 2013, Article ID: 679290 |
| 20 | Sitthiwirattham T . Boundary value problem for p-Laplacian Caputo fractional difference equations with fractional sum boundary conditions. Mathematical Methods in the Applied Sciences, 2016, 39 (6): 1522- 1534 |
| 21 | Guo D , Lakshmikantham V . Nonlinear Problems in Abstract Cones. Orlando: Academic Press, 1988 |
| 22 | Ding Y, O'Regan D. Positive solutions for a second-order p-Laplacian impulsive boundary value problem. Advances in Difference Equations, 2012, Article ID: 159 |