Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (4): 1042-1052.
Previous Articles Next Articles
Yuanfei Li*(),Jincheng Shi,Huishan Zhu,Shiqi Huang
Received:
2020-10-20
Online:
2021-08-26
Published:
2021-08-09
Contact:
Yuanfei Li
E-mail:liqfd@163.com
Supported by:
CLC Number:
Yuanfei Li,Jincheng Shi,Huishan Zhu,Shiqi Huang. Fast Growth or Decay Estimates of Thermoelastic Equations in an External Domain[J].Acta mathematica scientia,Series A, 2021, 41(4): 1042-1052.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Saint-Venant A . Mémoire sur la flexion des prismes. J Math Pures Appl, 1856, 1 (2): 89- 189 |
2 |
Ames K A , Payne L E , Schaefer P W . Spatial decay estimates in time-dependent Stokes flow. SIAM J Math Anal, 1993, 24, 1395- 1413
doi: 10.1137/0524081 |
3 |
Liu Y , Li Y F , Lin Y W , Yao Z . Spatial decay bounds for the channel flow of the Boussinesq equations. J Math Anal Appl, 2011, 381, 87- 109
doi: 10.1016/j.jmaa.2011.02.066 |
4 | Li Y F , Lin C . Spatial decay for solutions to 2-D Boussinesq system with variable thermal diffusivity. Acta Applicandae Mathematicae, 2017, 154, 111- 130 |
5 |
Knops R J , Quintanilla R . Spatial behaviour in thermoelastostatic cylinders of indefinitely increasing cross-section. J Elast, 2015, 121, 89- 117
doi: 10.1007/s10659-015-9523-8 |
6 | Knops R J , Quintanilla R . Spatial decay in transient heat conduction for general elongated regions. Q Appl Math, 2018, 76 (4): 611- 625 |
7 |
Horgan C O , Payne L E , Wheeler L T . Spatial decay estimates in transient heat equation. Quart Appl Math, 1984, 42, 119- 127
doi: 10.1090/qam/736512 |
8 | Lin C , Payne L E . Phragmén-Lindelöf alternative for a class of quasilinear second order parabolic problems. Diff Integ Equa, 1995, 8, 539- 551 |
9 | Liu Y , Lin C . Phragmén-Lindelöf type alternative results for the Stokes flow equation. Mathematical Inequalities & Applications, 2006, 9 (4): 671- 694 |
10 |
Leseduarte M C , Quintanilla R . Phragmén-Lindelöf alternative for the Laplace equation with dynamic boundary conditions. Journal of Applied Analysis and Computation, 2017, 7 (4): 1323- 1335
doi: 10.11948/2017081 |
11 | 李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题. 应用数学和力学, 2020, 41 (4): 406- 419 |
Li Y F . Phragmén-Lindelöf type results for Non-Standard stokes flow equations around semi-infinite cylinder. Applied Mathematics and Mechanics, 2020, 41 (4): 406- 419 | |
12 | 李远飞, 肖胜中, 郭连红, 曾鹏. 一类二阶拟线性瞬态方程组的Phragmén-Lindelöf型二择性结果. 吉林大学学报(理学版), 2020, 58 (5): 1047- 1054 |
Li Y F , Xiao S Z , Guo L H , Zeng P . Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations. Journal of Jilin University(Science Edition), 2020, 58 (5): 1047- 1054 | |
13 |
李远飞, 李志青. 具有非线性边界条件的瞬态热传导方程的二择一结果. 数学物理学报, 2020, 40A (5): 1248- 1258
doi: 10.3969/j.issn.1003-3998.2020.05.012 |
Li Y F , Li Z Q . Phragmén-Lindelöf type Results for transient heat conduction equation with nonlinear boundary conditions. Acta Mathematica Scientia, 2020, 40A (5): 1248- 1258
doi: 10.3969/j.issn.1003-3998.2020.05.012 |
|
14 |
Horgan C O , Payne L E . Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions. Archive for Rational Mechanics and Analysis, 1993, 122 (2): 123- 144
doi: 10.1007/BF00378164 |
15 |
Quintanilla R . Some remarks on the fast spatial growth/decay in exterior regions. Z Angew Math Phys, 2019, 70, 83
doi: 10.1007/s00033-019-1127-x |
16 | Hameed A A , Harfash A J . Continuous dependence of double diffusive convection in a porous medium with temperature-dependent density. Basrah Journal of Science, 2019, 37, 1- 15 |
17 | 李远飞. 海洋动力学中二维粘性原始方程组解对热源的收敛性. 应用数学和力学, 2020, 41 (3): 339- 352 |
Li Y F . Convergence results on heat source for 2D viscous primitive equations of ocean dynamics. Applied Mathematics and Mechanics, 2020, 41 (3): 339- 352 | |
18 | 李远飞, 郭连红. 具有边界反应Brinkman-Forchheimer型多孔介质的结构稳定性. 高校应用数学学报, 2019, 34 (3): 315- 324 |
LI Y F , Guo L H . Structural stability on boundary reaction terms in a porous medium of Brinkman-Forchheimer type. Applied Mathematics A Journal of Chinese Universities, 2019, 34 (3): 315- 324 | |
19 | 李远飞. 大尺度湿大气原始方程组对黏性系数的连续依赖性. 吉林大学学报(理学版), 2020, 58 (4): 744- 752 |
Li Y F . Continuous dependence of primitive equations of large-scale moist atmosphere on viscosity coefficient. Journal of Jilin University(Science Edition), 2020, 58 (4): 744- 752 | |
20 | Liu Y . Continuous dependence for a thermal convection model with temperature-dependent solubitity. Appl Math Comput, 2017, 308, 18- 30 |
21 |
Liu Y , Xiao S Z , Lin Y W . Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Mathematics and Computers in Simulation, 2018, 150, 66- 88
doi: 10.1016/j.matcom.2018.02.009 |
22 | Green A E , Naghdi P M . A re-examination of the basic postulates of thermomechanics. Proceeding of Royal Society London A, 1991, 432, 171- 194 |
23 |
Green A E , Naghdi P M . On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 1992, 15, 253- 264
doi: 10.1080/01495739208946136 |
24 |
Zhang X , Zuazua E . Decay of solutions of the system of thermoelasticity of type Ⅲ. Communications in Contempotrary Mathematics, 2003, 5 (1): 25- 83
doi: 10.1142/S0219199703000896 |
25 |
Messaoundi S A , Soufyane A . Boundary stabilization of memory type in thermoelasticity of type Ⅲ. Applicable Analysis, 2008, 87 (1): 13- 28
doi: 10.1080/00036810701714180 |
26 | Hirsch M W , Smale S . Differential Equations, Dynamical Systems, and Linear Algebra. New York: Academic Press, 1974 |
27 |
Payne L E , Song J C . Phragmén-Lindelöf and continuous dependence type results in generalized heat conduction. Z Angew Math Phys, 1996, 47, 527- 538
doi: 10.1007/BF00914869 |
28 | Song J C , Yoon D S . Phragmén-Lindelöf type and continuous dependence results in generalized dissipative heat conduction. J Korean Math Soc, 1998, 35 (4): 945- 960 |
[1] | Chen Xuejiao, Li Dandan, Shi Jincheng, Zeng Peng. Continuous Dependence of Harmonic Equations on Base Perturbation in Prismatic Cylinder [J]. Acta mathematica scientia,Series A, 2025, 45(1): 101-109. |
[2] | Chen Fei,Wang Shuai,Zhao Yongye,Wang Chuanbao. Time Decay Rate for Large-Solution About 3D Compressible MHD Equations [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1397-1408. |
[3] | Yu Pei. Decay of Weak Solutions to the Multi-Dimensional Burgers' Equation with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2016, 36(2): 340-352. |
[4] | Yang Fen. Decay Rate of Solutions to An Inhomogenerous Semilinear Biharmonic Equation in Entire Space [J]. Acta mathematica scientia,Series A, 2015, 35(2): 282-287. |
[5] | ZHONG Ji-Yu, LI Xiao-Pei. On Set-valued Solutions of an Iterative Equation [J]. Acta mathematica scientia,Series A, 2011, 31(4): 970-977. |
[6] | LIU Ying, LI Jia. L2 Decay for Weak Solutions of the MHD Equations in Half Space [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1166-1175. |
[7] | Dong Boqing; Li Yongsheng. Large Time Behavior of the Modified Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 498-505. |
|