Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (4): 1218-1234.
Previous Articles Next Articles
Zhonghua Zhang*(),Qian Zhang(
)
Received:
2020-09-11
Online:
2021-08-26
Published:
2021-08-09
Contact:
Zhonghua Zhang
E-mail:wwwzhangzhonghua@163.com;994926272@qq.com
Supported by:
CLC Number:
Zhonghua Zhang,Qian Zhang. Qualitative Analysis of a Stochastic SIVS Epidemic Model with Nonlinear Perturbations Under Regime Switching[J].Acta mathematica scientia,Series A, 2021, 41(4): 1218-1234.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Li J , Ma Z . Qualitative analyses of SIS epidemic model with vaccination and varying total population size. Mathematical and Computer Modelling, 2002, 35 (11/12): 1235- 1243 |
2 |
Farnoosh R , Parsamanesh M . Disease extinction and persistence in a discrete-time SIS epidemic model with vaccination and varying population size. Filomat, 2017, 31 (15): 4735- 4747
doi: 10.2298/FIL1715735F |
3 | Li J , Ma Z . Global analysis of SIS epidemic models with variable total population size. Mathematical and Computer Modelling, 2004, 39 (11/12): 1231- 1242 |
4 |
Kribs-Zaleta C , Velasco-Hern 'andez J . A simple vaccination model with multiple endemic states. Mathematical Biosciences, 2000, 164 (2): 183- 201
doi: 10.1016/S0025-5564(00)00003-1 |
5 | Gumel A , Moghadas S . A qualitative study of a vaccination model with nonlinear incidence. Applied Mathematics and Computation, 2015, 143 (2): 409- 419 |
6 |
Li X , Wang J , Ghosh M . Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination. Applied Mathematical Modelling, 2010, 34 (2): 437- 450
doi: 10.1016/j.apm.2009.06.002 |
7 |
Knipl D , Pilarczyk P , Rost G . Rich bifurcation structure in a two-patch vaccination model. Siam Journal on Applied Dynamical Systems, 2015, 14 (2): 980- 1017
doi: 10.1137/140993934 |
8 |
Nie L , Shen J , Yang C . Dynamic behavior analysis of SIVS epidemic models with state-dependent pulse vaccination. Nonlinear Analysis: Hybrid Systems, 2018, 27, 258- 270
doi: 10.1016/j.nahs.2017.08.004 |
9 |
Zhao Y , Jiang D , O'Regan D . The extinction and persistence of the stochastic SIS epidemic model with vaccination. Physical A: Statistical Mechanics and Its Applications, 2013, 392 (20): 4916- 4927
doi: 10.1016/j.physa.2013.06.009 |
10 |
Liu Q , Jiang D , Shi N , et al. The threshold of a stochastic SIS epidemic model with imperfect vaccination. Mathematics and Computers in Simulation, 2018, 144, 78- 90
doi: 10.1016/j.matcom.2017.06.004 |
11 | Zhao Y , Jiang D . Dynamics of stochastically perturbed SIS epidemic model with vaccination. Abstract and Applied Analysis, 2013, (2013): 1401- 1429 |
12 |
Zhao Y , Jiang D . The threshold of a stochastic SIS epidemic model with vaccination. Applied Mathematics and Computation, 2014, 243, 718- 727
doi: 10.1016/j.amc.2014.05.124 |
13 |
Zhang W , Meng X , Dong Y . Periodic solution and ergodic stationary distribution of stochastic SIRI epidemic systems with nonlinear perturbations. Journal of Systems Science and Complexity, 2019, 32 (4): 1104- 1124
doi: 10.1007/s11424-018-7348-9 |
14 | 林青腾. 随机干扰下若干传染病模型的动力学行为[D]. 福州: 福州大学, 2018 |
Lin Q T. Dynamics Behavior of a Number of Infectious Disease Model Under Random Disturbance[D]. Fuzhou: Fuzhou University, 2018 | |
15 | Takeuchi Y , Du N H , Hieu N T , Sato K . Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment. Journal of Mathematical Analysis and Applications, 2017, 323 (2): 938- 957 |
16 | Zu L , Jiang D , O'Regan D . Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching. Communications in Nonlinear Science and Numerical Simulation, 2015, 29 (1-3): 1- 11 |
17 |
Zhang X , Wang K . Stochastic SIR model with jumps. Applied Mathematics Letters, 2013, 26 (8): 867- 874
doi: 10.1016/j.aml.2013.03.013 |
18 | 胡俊娜. 转换机制下的具有非线性发生率的随机传染病模型的动力学性质[D]. 乌鲁木齐: 新疆大学, 2018 |
Hu J N. Dynamic Properties of Random Epidemic Model with Nonlinear Incidence Under the Transformation Mechanism[D]. Urumqi: Xinjiang university, 2018 | |
19 | Has'miniskii R. Stochastic Stability of Differential Equations[M]. Alphenaan den Rijn: Sijthoff and Noordhff, 1980 |
20 |
Zhu C , Yin G . Asymptotic properties of hybrid diffusion systems. SIAM Journal on Control and Optimization, 2007, 46 (4): 1155- 1179
doi: 10.1137/060649343 |
21 |
Jiang D , Shi N , Li X . Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. Journal of Mathematical Analysis and Applications, 2008, 340 (1): 588- 597
doi: 10.1016/j.jmaa.2007.08.014 |
[1] | Zhu Zhifeng, Zhou Junchao, Huang Hong. Harris Recurrence of Continuous-Time Markov Process on General State Space [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1245-1254. |
[2] | Ma Zhanyou, Qin Guoli, Jiang Zishu, Shen Ying. Analysis of P2P Networks Based on Geo/G/1 Retrial Queue with Optional Vacation and Priority [J]. Acta mathematica scientia,Series A, 2025, 45(1): 295-304. |
[3] | Xuyan Xiang,Haiqin Fu,Jieming Zhou,Yingchun Deng,Xiangqun Yang. Statistical Identification of Reversible Markov Chain on Cyclic Graph [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1682-1698. |
[4] | Zhifeng Zhu,Shaoyi Zhang. Study on the Convergence of Nonhomogeneous Markov Chains with Probability Distance [J]. Acta mathematica scientia,Series A, 2018, 38(5): 963-969. |
[5] | Zhang Ren, Zhang Shaoyi. The Existence of Invariant Measure for Markov Chains with Uniform Countable Additivity [J]. Acta mathematica scientia,Series A, 2018, 38(2): 350-357. |
[6] | WAN Cheng-Gao. The Limit Theorems for Function of Markov Chains in Random Environments [J]. Acta mathematica scientia,Series A, 2015, 35(1): 163-171. |
[7] | KANG Ning, JING Ke, HOU Zhen-Ting. Degree Distribution of a Promoted Preferential Growth System [J]. Acta mathematica scientia,Series A, 2013, 33(5): 977-983. |
[8] | ZHANG Ren, ZHANG Shao-Yi. Stochastic Stability for the Nonlinear Autoregressive Series [J]. Acta mathematica scientia,Series A, 2013, 33(2): 260-266. |
[9] | JIANG Yu, MEI Li-Quan, SONG Xin-Yu, TIAN Wei-Jun, DING Xue-Mei. Analysis of an Impulsive Epidemic Model with Time Delays and Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2012, 32(4): 670-684. |
[10] | LI Ying-Qiu, WANG He-Song, WANG Zhong. Some Strong Limit Theorems of Geometric Average of Transition Probabilities |and Their Function for Markov Chains in Markovian Environments [J]. Acta mathematica scientia,Series A, 2011, 31(2): 508-517. |
[11] | HU Di-He. An Introduction to Markov Process in Random Environment [J]. Acta mathematica scientia,Series A, 2010, 30(5): 1210-1241. |
[12] | HOU Zhen-Ting, KONG Xiang-Xing, SHI Ding-Hua, CHEN Guan-Rong. The Mathematical Foundation of the BA Model [J]. Acta mathematica scientia,Series A, 2010, 30(5): 1313-1321. |
[13] |
Yang Weiguo.
A Class of Small Deviation Theorems for the Sequences of N-valued Random Variables with Respect to mth-order Nonhomogeneous Markov Chains [J]. Acta mathematica scientia,Series A, 2009, 29(2): 517-527. |
[14] | Li Yingqiu. Transience for Markov Chains in Double Infinite Random Environments [J]. Acta mathematica scientia,Series A, 2007, 27(2): 269-276. |
[15] | XIAO Zheng-Yan, HU Di-He. The Classification of States for Skew Product Markov Chains [J]. Acta mathematica scientia,Series A, 2003, 23(3): 306-313. |
|