| 1 | Zhou P , Yang X L , Wang X G , et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270- 273 | | 2 | Li Q , Guan X , Wu P , et al. Early transmission dynamics in Wuhan, China, of Noval Coronavirus-infected Pneumonia. N Engl J Med, 2020, 382, 1199- 1207 | | 3 | Gao Q W , Zhuang J . Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model. Appl Math Comput, 2020, | | 4 | 邢伟, 高晋芳, 颜七笙, 等. 一类受媒体报道影响的SEIS传染病模型的定性分析. 西北大学学报(自然科学版), 2018, 48 (5): 639- 643 | | 4 | Xing W , Gao J F , Yan Q S , et al. An epidemic model with saturated media/psychological impact. Journal of Northwest University (Natural Science Edition), 2018, 48 (5): 639- 643 | | 5 | 严阅, 陈瑜, 刘可伋, 等. 基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测. 中国科学: 数学, 2020, 50 (3): 385- 392 | | 5 | Yan Y , Chen Y , Liu K , et al. Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system (in Chinese). Sci Sin Math, 2020, 50 (3): 385- 392 | | 6 | 王霞, 唐三一, 陈勇, 等. 新型冠状病毒肺炎疫情下武汉及周边地区何时复工? 数据驱动的网络模型分析. 中国科学: 数学, 2020, 50 (7): 969- 978 | | 6 | Wand X , Tang S Y , Chen Y , et al. When will be the resumption of work in wuhan and its surrounding areas during COVID-19 epidemic? A data-driven network modeling analysis (in Chinese). Sci Sin Math, 2020, 50 (7): 969- 978 | | 7 | Xing Y , Zhang L , Wang X . Modeling and stability of epidemic model with free-living pathogens growing in the environment. J Appl Anal Comput, 2020, 10 (1): 55- 70 | | 8 | Liu S , Zhang L , Xing Y . Dynamics of a stochastic heroin epidemic model. J Comput Appl Math, 2019, 351, 260- 269 | | 9 | 邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102 | | 9 | Deng D , Li Y . Traveling waves in a nonlocal dispersal SIR epidemic model with treatment. Acta Math Sci, 2020, 40A (1): 72- 102 | | 10 | 曹忠威, 文香丹, 冯徽, 等. 一类具有随机扰动的非自治SIRI流行病模型的动力学行为. 数学物理学报, 2020, 40A (1): 221- 233 | | 10 | Cao Z W , Wen X D , Feng W , et al. Dynamics of a nonautonomous SIRI epidemic model with random perturbations. Acta Math Sci, 2020, 40A (1): 221- 233 | | 11 | Huo H F , Feng L X . Global stability for an HIV/AIDS epidemic model with different latent stages and treatment. Applied Mathematical Modelling, 2013, 37 (3): 1480- 1489 | | 12 | Du Z W , Xu X K , Wu Y , et al. The serial interval of COVID-19 among publicly reported confirmed cases. medRxiv, 2020, | | 13 | 霍海峰, 邹明轩. 一类具有接种和隔离治疗的结核病模型的稳定性. 兰州理工大学学报, 2016, 42 (3): 150- 154 | | 13 | Huo H F , Zou M X . Stability of a tuberculosis model with vaccination and isolation treatment. Journal of Lanzhou University of Technology, 2016, 42 (3): 150- 154 | | 14 | 张菊平, 李云, 靳祯, 等. 武汉市COVID-19疫情与易感人群软隔离强度关系分析. 应用数学学报, 2020, 43 (2): 162- 173 | | 14 | Zhang J P , Li Y , Jin Z , et al. Analysis of the relationship between transmission of COVID-19 in Wuhan and soft quarantine intensity in susceptible population. Acta Math Appl, 2020, 43 (2): 162- 173 | | 15 | 李倩, 肖燕妮, 唐三一, 等. COVID-19疫情时滞模型构建与确诊病例驱动的追踪隔离措施分析. 应用数学学报, 2020, 43 (2): 238- 250 | | 15 | Li Q , Xiao Y N , Tang S Y , et al. Modelling COVID-19 epidemic with time delay and analyzing the strategy of confirmed cases-driven contact tracing followed by quarantine. Acta Math Appl, 2020, 43 (2): 238- 250 | | 16 | Yang Y L , Li J Q , Ma Z E , Liu L J . Global stability of two models with incomplete for tuberculosis. Chaos, Solitons & Fractals, 2010, 43, 79- 85 | | 17 | Huo H F , Feng L X . Global stability of an epidemic model with incomplete treatment and vaccination. Discrete Dynamics in Nature and Society, 2012, | | 18 | Yang X , Chen L . Permanence and positive periodic solution for the single-species nonautonomous delay diffusive model. Comput Math Appl, 1996, 32 (4): 109- 116 | | 19 | van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180, 29- 48 | | 20 | LaSalle J P. The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. Philadelphia: SIAM, 1976 |
|