Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1283-1295.
Previous Articles Next Articles
Zongning Zhang(),Chunguang Li*(
),jianqiang Dong
Received:
2020-11-29
Online:
2021-10-26
Published:
2021-10-08
Contact:
Chunguang Li
E-mail:zzn5238@163.com;cglizd@hotmail.com
Supported by:
CLC Number:
Zongning Zhang,Chunguang Li,jianqiang Dong. General Propagation Lattice Boltzmann Model for a Variable-Coefficient Compound KdV-Burgers Equation[J].Acta mathematica scientia,Series A, 2021, 41(5): 1283-1295.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Chen S Y , Doolen G D . Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 30, 329- 364
doi: 10.1146/annurev.fluid.30.1.329 |
2 |
Ginzburg I . Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Advances in Water Resources, 2005, 28 (11): 1171- 1195
doi: 10.1016/j.advwatres.2005.03.004 |
3 | Li Q H , Chai Z H , Shi B C . Lattice Boltzmann model for a class of convection-diffusionequations with variable coefficients. Computers and Mathematics with Applications, 2015, 5 (4): 548- 561 |
4 | Zhang J Y , Yan G W . Lattice Boltzmann method for one and two-dimensional burgers equation. Physica A: Statistical Mechanics and Its Applications, 2008, 387 (19): 4771- 4786 |
5 |
Yan G W . A lattice Boltzmann equation for waves. Journal of Computational Physics, 2000, 161 (1): 61- 69
doi: 10.1006/jcph.2000.6486 |
6 | Liu F , Shi W P , Wu F F . A lattice Boltzmann model for the generalized Boussinesq equation. Applied Mathematics and Computation, 2016, 274 (1): 331- 342 |
7 |
Chai Z H , Shi B H , Zheng L . A unified lattice Boltzzmann model for some nonlinear partial differential equations. Chaos, Soliton and Fract, 2008, 36 (4): 874- 882
doi: 10.1016/j.chaos.2006.07.023 |
8 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版社, 2009 |
He Y l , Wang Y , Li Q . The Theory and Application of Lattice Boltzmann Method. Beijing: Science Press, 2009 | |
9 | 默罕默德·阿卜杜勒马吉德. 格子玻尔兹曼方法. 北京: 电子工业出版社, 2015 |
Mohamad A A . Lattice Boltzmann Method. Beijing: Electronic Industry Press, 2015 | |
10 | Chai Z H , Shi B C . Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: modeling, analysis, and elements. Physical Review E, 2020, 102, 023306 |
11 |
Hu W Q , Gao Y T , Lan Z Z . Lattice Boltzmann model for a generalized Gardner equation with time-dependent variable coefficient. Applied Mathematical Modelling, 2017, 46, 126- 140
doi: 10.1016/j.apm.2017.01.061 |
12 |
Lan Z Z , Hu W Q , Gao Y T . General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Applied Mathematical Modelling, 2019, 73, 695- 714
doi: 10.1016/j.apm.2019.04.013 |
13 | 赖惠林, 马昌凤. 非线性偏微分方程的高阶格子BGK模型. 中国科学G版, 2009, 39 (7): 913- 922 |
Lan H L , Ma C F . A higer order lattice BGK model for simulating some nonlinear partial differential equations. Sci China Ser G, 2009, 39 (7): 913- 922 | |
14 |
Sterling J D , Chen S Y . Stability analysis of lattice Boltzmann methods. Journal of Computational Physics, 1996, 123 (1): 196- 206
doi: 10.1006/jcph.1996.0016 |
15 | Abd-el-Malek M B , Helal M M . Group method solution of the generalized forms of Burgers, Burgers-KDV and Kdv equations with time-dependent variable coefficients. Acta Mesh, 2001, 221, 281- 296 |
[1] | Lv Xueqin, He Songyan, Wang Shiyu. Combining RKM with FDM for Time Fractional Convection-Diffusion Equations with Variable Coefficients [J]. Acta mathematica scientia,Series A, 2025, 45(1): 153-164. |
[2] | Zhang Jinyu,Wang Dan,Geng Yong,Yang Miaomiao,Wang Xiaoli. The Integrability to a (1+1) Dimensional Variable Coefficient Complex Equation [J]. Acta mathematica scientia,Series A, 2023, 43(4): 994-1002. |
[3] | YANG Ai-Li, WU Yu-Jiang, SONG Lun-Ji. A Class of Generalized Three Dimensional Convection-Diffusion Equations with Multi-Level Incremental Unknowns Method [J]. Acta mathematica scientia,Series A, 2009, 29(3): 564-572. |
[4] |
Zhang Jinliang ; Wang Mingliang ; Wang Yueming.
The Extended F-expansion Method and the Exact Solutions to the KdV and mKdV Equation with Variable Coefficients |
|