Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1333-1346.
Previous Articles Next Articles
Received:
2020-04-17
Online:
2021-10-26
Published:
2021-10-08
Contact:
Hui Yang
E-mail:mathyh@126.com;yzhan@jlu.edu.cn
Supported by:
CLC Number:
Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations[J].Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Brezis H . Functional Analysis. Sobolev Spaces and Partial Differential Equations. New York: Springer, 2010 |
2 | Chipot M , Valente V , Caffarelli G V . Remarks on a nonlocal problem involving the Dirichlet energy. Rend Semin Mat U Pad, 2003, 110, 199- 220 |
3 | Chipot M , Savitska T . Nonlocal p-Laplace equations depending on the $ L.p $ norm of the Gradient. Adv Differential Equ, 2014, 19, 997- 1020 |
4 |
D'Ancona P , Shibata Y . On global solvability of non-linear viscoelastic equation in the analytic category. Math Methods Appl Sci, 1994, 17, 477- 489
doi: 10.1002/mma.1670170605 |
5 |
D'Ancona P , Spagnolo S . Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108, 247- 262
doi: 10.1007/BF02100605 |
6 |
Fu Y , Xiang M . Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl Anal, 2016, 95, 524- 544
doi: 10.1080/00036811.2015.1022153 |
7 | Gazzola F , Weth T . Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level. Differ Integral Equ, 2005, 18, 961- 990 |
8 |
Ghisi M , Gobbino M . Hyperbolic-parabolic singular perturbation for middly degenerate Kirchhoff equations: time-decay estimates. J Differ Equ, 2008, 245, 2979- 3007
doi: 10.1016/j.jde.2008.04.017 |
9 | Han Y . Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity. Appl Math Lett, 2020, 99, 1- 7 |
10 |
Han Y , Gao W , Sun Z , Li H . Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput Math Appl, 2018, 76, 2477- 2483
doi: 10.1016/j.camwa.2018.08.043 |
11 |
Han Y , Li Q . Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput Math Appl, 2018, 75, 3283- 3297
doi: 10.1016/j.camwa.2018.01.047 |
12 |
Levine H A . Some nonexistence and stability theorems for solutions of formally parabolic equations of the form $ Pu_t = -Au+F(u) $. Arch Ration Mech Anal, 1973, 51, 371- 386
doi: 10.1007/BF00263041 |
13 |
Li J , Han Y . Global existence and finite time blow-up of solutions to a nonlocal $ p $-Laplace equation. Math Model Anal, 2019, 24, 195- 217
doi: 10.3846/mma.2019.014 |
14 |
Liao M , Gao W . Blow-up phenomena for a nonlocal p-Laplace equation with Neumann boundary conditions. Arch Math, 2017, 108, 313- 324
doi: 10.1007/s00013-016-0986-z |
15 |
Liu Y , Zhao J . On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal TMA, 2006, 64, 2665- 2687
doi: 10.1016/j.na.2005.09.011 |
16 | Nishihara K . On a global solution of some quasilinear hyperbolic equation. Tokyo J Math, 1984, 7, 437- 459 |
17 |
Payne L E , Sattinger D H . Saddle points and instability of nonlinear hyperbolic equtions. Israel J Math, 1975, 22, 273- 303
doi: 10.1007/BF02761595 |
18 |
Philippin G A , Proytcheva V . Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems. Math Methods Appl Sci, 2006, 29, 297- 307
doi: 10.1002/mma.679 |
19 |
Xu R . Asymptotic behavior and blow up of solutions for semilinear parabolic equations at critical energy level. Math Comput Simulat, 2009, 80, 808- 813
doi: 10.1016/j.matcom.2009.08.028 |
20 |
Xu R , Su J . Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264, 2732- 2763
doi: 10.1016/j.jfa.2013.03.010 |
21 | Zheng S , MChipot M . Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptotic Anal, 2005, 45, 301- 312 |
[1] | Meng Xiaoying,Lu Lu. Existence and Asymptotic Behavior of Solutions for Kirchhoff Equations Involving the Fractional $ p$-Laplacian [J]. Acta mathematica scientia,Series A, 2025, 45(2): 434-449. |
[2] | Li Jianjun,Li Yangchen. The Existence and Blow-Up of Solutions for a Class of Fractional $ p$-Laplace Diffusion Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2025, 45(2): 465-478. |
[3] |
Pan Rou, Chen Lin.
Existence of Multiple Solutions for a Fractional |
[4] | Shi Jincheng, Liu Yan. Global Existence and Blow-Up for Semilinear Third Order Evolution Equation with Different Power Nonlinearities [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1550-1562. |
[5] | Gao Xiaoru, Li Jianjun, Tu Jun. Blow-Up of Solutions for a Class of Fractional Diffusion Equations with Time Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1230-1241. |
[6] | Jin Zhenfeng, Sun Hongrui, Zhang Weimin. Multiplicity and Asymptotic Behavior of Normalized Solutions for Kirchhoff-Type Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 871-884. |
[7] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
[8] | Duan Xueliang, Wu Xiaofan, Wei Gongming, Yang Haitao. Multiple Positive Solutions of Kirchhoff Type Linearly Coupled System with Critical Exponent [J]. Acta mathematica scientia,Series A, 2024, 44(3): 699-716. |
[9] | Li Fengjie, Li Ping. Blow-up Solutions in a p-Kirchhoff Equation of Pseudo-Parabolic Type [J]. Acta mathematica scientia,Series A, 2024, 44(3): 717-736. |
[10] | Fu Peiyuan, Xia Aliang. Multiplicity of High Energy Solutions for a Class of Nonlocal Critical Elliptic System [J]. Acta mathematica scientia,Series A, 2024, 44(1): 101-119. |
[11] | Zhou Yinggao, Li Zhouxin. An Application of Linking Theorem to Degenerative Elliptic Equations [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1759-1773. |
[12] | Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372. |
[13] | Cheng Qingfang,Liao Jiafeng,Yuan Yanxiang. Existence of Positive Solutions for a Class of Schrödinger-Newton Systems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1373-1381. |
[14] | Shen Xuhui,Ding Juntang. Blow-Up Conditions of Porous Medium Systems with Gradient Source Terms and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1417-1426. |
[15] | Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2023, 43(1): 169-180. |
|