Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1545-1554.
Previous Articles Next Articles
Xiaofang Yang1(),Xiao Tang2(
),Tianxiu Lu1,3,*(
)
Received:
2020-09-29
Online:
2021-10-26
Published:
2021-10-08
Contact:
Tianxiu Lu
E-mail:yxf_suse@163.com;80651177@163.com;lubeeltx@163.com
Supported by:
CLC Number:
Xiaofang Yang,Xiao Tang,Tianxiu Lu. The Collectively Sensitivity and Accessible in Non-Autonomous Composite Systems[J].Acta mathematica scientia,Series A, 2021, 41(5): 1545-1554.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Kolyada S , Snoha L . Topological entropy of nonautononous dynamical systems. Random Comput Dyn, 1996, 4, 205- 233 |
2 | Elaydi S . Nonautonomous difference equations: open problems and conjectures. Fields Inst Commun, 2004, 42, 423- 428 |
3 |
Elaydi S , Sacker R J . Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures. J Difference Equ Appl, 2005, 11, 337- 346
doi: 10.1080/10236190412331335418 |
4 |
Canovas J S . Li-Yorke chaos in a class of nonautonomous discrete systems. J Difference Equ Appl, 2011, 17, 479- 486
doi: 10.1080/10236190903049025 |
5 |
Kumar A , Vats R K , Kumar A . Approximate controllability of second-order non-autonomous system with finite delay. J Dyn Control Syst, 2020, 3, 1- 17
doi: 10.1007/s10883-019-09475-0?utm_source=xmol |
6 |
Shao H , Chen G , Shi Y . Topological conjugacy between induced non-autonomous set-valued systems and subshifts of finite. Type Qual Theor Dyn Syst, 2020, 19 (1): 295- 308
doi: 10.1007/s12346-020-00369-2 |
7 | Shao H , Chen G , Shi Y . Some criteria of chaos in non-autonomous discrete dynamical systems. J Differ Equ Appl, 2020, 7, 1- 14 |
8 |
Li R S , Zhao Y , Wang H . Stronger forms of transitivity and sensitivity for non-autonomous discrete dynamical systems and furstenberg families. J Dyn Cont Syst, 2020, 26, 109- 126
doi: 10.1007/s10883-019-09437-6 |
9 |
卢天秀, 朱培勇, 吴新星. 非自治离散系统的分布混沌性. 数学物理学报, 2015, 35A (3): 558- 566
doi: 10.3969/j.issn.1003-3998.2015.03.010 |
Lu T X , Zhu P Y , Wu X X . Distributional chaos in nonautonomous discrete systems. Acta Math Sci, 2015, 35A (3): 558- 566
doi: 10.3969/j.issn.1003-3998.2015.03.010 |
|
10 |
卢天秀, 辛邦颖, 毛巍. 关于非自治离散系统中敏感性的一些结论. 数学物理学报, 2017, 37A (5): 808- 813
doi: 10.3969/j.issn.1003-3998.2017.05.002 |
Lu T X , Xin B Y , Mao W . Some properties of sensitivity in nonautonomous discrete systems. Acta Math Sci, 2017, 37A (5): 808- 813
doi: 10.3969/j.issn.1003-3998.2017.05.002 |
|
11 |
Tang X , Chen G R , Lu T X . Some iterative properties of F-chaos in non-autonomous discrete systems. Entropy, 2018, 20 (3): 188
doi: 10.3390/e20030188 |
12 |
Li T Y , Yorke J A . Period three implies chaos. Amer Math Monthly, 1975, 82 (10): 985- 992
doi: 10.1080/00029890.1975.11994008 |
13 | Devaney R L. An Introduction to Chaotic Dynamical Systems. New York: Addison Wesley, 1989 |
14 |
Schweizer B , Smital J . Measure of chaos and a spectral decomposition of dynamical systems of interval. Trans Amer Math Soc, 1994, 344, 737- 754
doi: 10.1090/S0002-9947-1994-1227094-X |
15 |
Wang L D , Huang G , Huan S . Distributional chaos in a sequence. Nonlinear Anal, 2007, 67, 2131- 2136
doi: 10.1016/j.na.2006.09.005 |
16 | Bayart F , Bermudez T . Dynamics of Linear Operators. Cambridge: Cambridge University Press, 2009 |
17 |
Khan M S I , Islam M S . A chaotic three dimensional non-linear autonomous system beyond lorenz type systems. J Bangladesh Acad Sci, 2012, 36 (2): 159- 170
doi: 10.3329/jbas.v36i2.12959 |
18 |
Bernardes N C , Bonilla A , Muller V , Peris A . Distributional chaos for linear operators. J Funct Anal, 2013, 265, 2143- 2163
doi: 10.1016/j.jfa.2013.06.019 |
19 |
Balibrea F . On problems of topological dynamics in non-autonomous discrete systems. Appl Math Nonlinear Sci, 2016, 1, 391- 404
doi: 10.21042/AMNS.2016.2.00034 |
20 | Li R S , Lu T X , Waseem A . Sensitivity and transitivity of systems satisfying the large deviations theorem in a sequence. Int J Bifurcation and Chaos, 2019, 29 (9): 420- 431 |
21 |
Wu X X , Liang S , Ma X , et al. The mean sensitivity and mean equicontinuity on uniform spaces. Int J Bifurcation and Chaos, 2020, 30 (8): 2050122
doi: 10.1142/S0218127420501229 |
22 |
Wu X X , Ma X , Chen G R , Lu T X . A note on the sensitivity of semiflows. Topology Appl, 2020, 271, 107046
doi: 10.1016/j.topol.2019.107046 |
23 |
Li J , Oprocha P , Wu X X . Furstenberg families, sensitivity and the space of probability measures. Nonlinearity, 2017, 30, 987- 1005
doi: 10.1088/1361-6544/aa5495 |
24 | Li R S , Lu T X , Chen G R , Yang X F . Further discussion on Kato's chaos in set-valued discrete systems. J Appl Anal Comput, 2020, 10 (6): 2491- 2505 |
[1] | Li Bin,Xie Li. The Effects of Police Deployment in a Chemotaxis System with Singular Sensitivity for Criminal Activities [J]. Acta mathematica scientia,Series A, 2025, 45(2): 512-533. |
[2] | Wu Ziyi, Yang Junyuan. Study on Parameter Identifiability of an Age-Structured Tuberculosis Model with Relapse [J]. Acta mathematica scientia,Series A, 2025, 45(1): 269-278. |
[3] | Lian Yuan, Liu Hongjun, Zhu Bin. Weyl Mean Equicontinuity and Weyl Mean Sensitivity of A Random Dynamical System [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1595-1606. |
[4] |
He Yaxing, Tang Yinghui, Liu Qionglin.
Analysis of |
[5] | Tengfei Wang,Tao Feng,Xinzhu Meng. Complex Dynamics and Stochastic Sensitivity Analysis of a Predator-Prey Model with Crowley-Martin Type Functional Response [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1192-1203. |
[6] | Juan Wang,Zixia Yuan. Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1646-1669. |
[7] | Liu Huan, Wu Qiongli, Cournède Paul-Henry. Research on the Effects of Different Sampling Algorithm on Sobol Sensitivity Analysis [J]. Acta mathematica scientia,Series A, 2018, 38(2): 372-384. |
[8] | Wei Aiju, Zhang Xinjian, Wang Junyi, Li Kezan. Dynamics Analysis of an Ebola Epidemic Model [J]. Acta mathematica scientia,Series A, 2017, 37(3): 577-592. |
[9] | LIU Xiao-Mao, LI Chu-Lin. Sensitivity Analysis of Conditional Value at Risk [J]. Acta mathematica scientia,Series A, 2004, 24(4): 442-448. |
|