Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (1): 131-138.
Previous Articles Next Articles
Chenyang Xia,Zhenhui Wang*(),Zhibo Cheng
Received:
2021-03-23
Online:
2022-02-26
Published:
2022-02-23
Contact:
Zhenhui Wang
E-mail:tiantian@hpu.edu.com
Supported by:
CLC Number:
Chenyang Xia,Zhenhui Wang,Zhibo Cheng. Positive Periodic Solutions for a Damped Duffing Equation with Singularity of Attractive Type[J].Acta mathematica scientia,Series A, 2022, 42(1): 131-138.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Ding T . A boundary value problem for the periodic Brillouin focusing system. Acta Sci Natru Univ Pekinensis, 1965, 11 (1): 31- 38 |
2 | Liebau G . Die bedeutung der tragheitskrafte fur die dynamik des blukreislaufs. Zs Kreislaufforschung, 1957, 46: 428- 438 |
3 |
Blackmore D , Rosato A , et al. Tapping dynamics for a column of particles and beyond. J Mech Mater Struct, 2011, 6: 71- 86
doi: 10.2140/jomms.2011.6.71 |
4 | Younis B . MEMS Linear and Nonlinear Statics and Dynamics. New York: Springer, 2011 |
5 |
Lazer A , Solimini S . On periodic solutions of nonlinear differential equations with singularities. Proc Amer Math Soc, 1987, 99 (1): 109- 114
doi: 10.1090/S0002-9939-1987-0866438-7 |
6 |
Cheng Z , Ren J . Periodic and subharmonic solutions for Duffing equation with a singularity. Discrete Contin Dyn Syst, 2012, 32 (5): 1557- 1574
doi: 10.3934/dcds.2012.32.1557 |
7 | Cheng Z , Ren J . Periodic solution for second order damped differential equations with attractive-repulsive singularities. Rocky Mountain J Math, 2018, 48 (3): 753- 768 |
8 | Cheng Z , Yuan Q . Damped superlinear Duffing equation with strong singularity of repulsive type. J Fixed Point Theory Appl, 2020, 22 (2): 1- 21 |
9 |
Fonda A , Zanolin F . Subharmonic solutions for some second-order differential equatins with singularities. SIAM J Math Anal, 1993, 24 (5): 1294- 1311
doi: 10.1137/0524074 |
10 |
Del Pino M , Manásevich R , Montero A . T-periodic solutions for some second order differential equations with singularities. Proc Roy Soc Edinb, 1992, 120: 231- 243
doi: 10.1017/S030821050003211X |
11 |
Del Pino M , Manásevich R . Infinitely many T-periodic solutions for a problem ariding in nonlinear elasticity. J Differential Equations, 1993, 103: 260- 277
doi: 10.1006/jdeq.1993.1050 |
12 |
Torres P . Weak singularities may help periodic solutions to exist. J Differential Equations, 2007, 232 (1): 277- 284
doi: 10.1016/j.jde.2006.08.006 |
13 |
Xia J , Wang Z . Existence and multiplicity of periodic solutions for the Duffing equation with singularity. Proc Roy Soc Edinb, 2007, 137 (3): 625- 645
doi: 10.1017/S0308210505000879 |
14 |
Wang H . Positive periodic solutions of singular systems with a parameter. J Differential Equations, 2010, 249 (12): 2986- 3002
doi: 10.1016/j.jde.2010.08.027 |
15 |
姚绍文, 程志波. 一类带阻尼项的奇性Duffing方程周期解的存在性. 数学物理学报, 2018, 38A (3): 543- 548
doi: 10.3969/j.issn.1003-3998.2018.03.011 |
Yao S , Cheng Z . Positive periodic solution for a damped Duffing equation with singularity. Acta Math Sci, 2018, 38A (3): 543- 548
doi: 10.3969/j.issn.1003-3998.2018.03.011 |
|
16 |
Manasevich R , Mawhin J . Periodic solutions for nonlinear systems with p-Laplacian-like operator. J Differential Equations, 1998, 145 (2): 367- 393
doi: 10.1006/jdeq.1998.3425 |
|