Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (1): 176-186.
Previous Articles Next Articles
Tong Zhao(),Hailong Yuan*(
),Gaihui Guo(
)
Received:
2021-01-18
Online:
2022-02-26
Published:
2022-02-23
Contact:
Hailong Yuan
E-mail:zhaotong26725@163.com;yuanhailong@sust.edu.cn;guogaihui@sust.edu.cn
Supported by:
CLC Number:
Tong Zhao,Hailong Yuan,Gaihui Guo. Positive Solutions of a Predator-Prey Model with Modified Leslie-Gower Type[J].Acta mathematica scientia,Series A, 2022, 42(1): 176-186.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Zhu Y , Wang K . Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling type Ⅱ schemes. J Math Anal Appl, 2011, 384: 400- 408
doi: 10.1016/j.jmaa.2011.05.081 |
2 |
Zhou J , Shi J P . The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling type Ⅱ functional responses. J Math Anal Appl, 2013, 405 (2): 618- 630
doi: 10.1016/j.jmaa.2013.03.064 |
3 |
Wang Y X , Zuo H Q . Bifurcation branch and stability of stationary solutions of a predator-prey model. Appl Anal, 2020,
doi: 10.1080/00036811.2020.1811977 |
4 |
Huang J C , Ruan S G , Song J . Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response. J Differential Equations, 2014, 257 (6): 1721- 1752
doi: 10.1016/j.jde.2014.04.024 |
5 |
Leslie P H . Some further notes on the use of matrices in population mathematics. Biometrika, 1948, 35 (3/4): 213- 245
doi: 10.2307/2332342 |
6 |
Leslie P H , Gower J C . The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika, 1960, 47 (3/4): 219- 234
doi: 10.2307/2333294 |
7 |
Li Y , Xiao D . Bifurcations of a predator-prey system of Holling and Leslie types. Chaos Soliton Fract, 2007, 34 (2): 606- 620
doi: 10.1016/j.chaos.2006.03.068 |
8 | Lian F , Xu Y . Hopf bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay. Appl Math Comput, 2009, 215 (4): 1484- 1495 |
9 | 孟丹, 李艳玲. 一类具有修正的Leslie型功能反应的捕食-食饵模型. 纺织高校基础科学学报, 2016, 29 (1): 11- 17 |
Meng D , Li Y L . A predator prey model with modified Leslie type functional response. Basic Sci J Text Univ, 2016, 29 (1): 11- 17 | |
10 | 王明新. 非线性椭圆型方程. 北京: 科学出版社, 2010: 154- 169 |
Wang M X . Nonlinear Elliptic Equations. Beijing: Science Press, 2010: 154- 169 | |
11 |
Gui C F , Lou Y . Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model. Commun Pure Appl Math, 1994, 47: 1571- 1594
doi: 10.1002/cpa.3160471203 |
12 |
Du Y H , Lou Y . Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 349 (6): 2443- 2475
doi: 10.1090/S0002-9947-97-01842-4 |
13 |
Peng R , Wang M X . On multiplicity and stability of positive solutions of a diffusive prey-predator model. J Math Anal Appl, 2006, 316 (1): 256- 268
doi: 10.1016/j.jmaa.2005.04.033 |
14 | 叶其孝, 李正元, 王明新, 等. 反应扩散方程引论. 北京: 科学出版社, 2011 |
Ye Q X , Li Z Y , Wang M X , et al. Introduction to Reaction Diffusion Equation. Beijing: Science Press, 2011 | |
15 |
Hsu S B , Huang T W . Global stability for a class of predator-prey system. SIAM J Appl Math, 1995, 55 (3): 763- 783
doi: 10.1137/S0036139993253201 |
16 | 袁海龙, 李艳玲. 一类捕食-食饵模型共存解的存在性与稳定性. 陕西师范大学学报(自然科学版), 2014, 42 (1): 15- 18 |
Yuan H L , Li Y L . Existence and stability of coexistence solutions for a predator-prey model. Journal of Shaanxi Normal University(Natur Sci Edi), 2014, 42 (1): 15- 18 | |
17 | 李海侠. 一类具有毒素的非均匀chemostat模型正解的存在性和唯一性. 数学物理学报, 2020, 40 (5): 57- 67 |
Li H X . Existence and uniqueness of positive solutions to an unstirred chemostat with toxins. Acta Math Sci, 2020, 40 (5): 57- 67 | |
18 | 袁海龙, 李艳玲. 一类具有Lotka-Volterra竞争模型共存解的存在性与稳定性. 数学物理学报, 2017, 37 (1): 173- 184 |
Yuan H L , Li Y L . Existence and stability of coexistence states for a Lotka-Volterra competition model. Acta Math Sci, 2017, 37 (1): 173- 184 |
|