Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 594-604.
Previous Articles Next Articles
Xiao Wu1,Yinying Kong2,*(),Zhenbin Guo3
Received:
2021-03-04
Online:
2022-04-26
Published:
2022-04-18
Contact:
Yinying Kong
E-mail:kongcoco@hotmail.com
Supported by:
CLC Number:
Xiao Wu,Yinying Kong,Zhenbin Guo. Asymptotic Optimality of Quantized Stationary Policies in Continuous-Time Markov Decision Processes with Polish Spaces[J].Acta mathematica scientia,Series A, 2022, 42(2): 594-604.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Journals Doshi B T . Continuous-time control of Markov processes on an arbitrary state space: discounted rewards. Ann Stat, 1976, 4: 1219- 1235 |
2 | Dynkin E B , Yushkevich A A . Controlled Markov Processes. New York: Springer, 1979 |
3 |
Feinberg E A . Continuous-time jump Markov decision processes: A discrete-event approach. Math Oper Res, 2004, 29: 492- 524
doi: 10.1287/moor.1040.0089 |
4 |
Guo X P . Continuous-time Markov decision processes with discounted rewards: The case of Polish spaces. Math Oper Res, 2007, 32 (1): 73- 87
doi: 10.1287/moor.1060.0210 |
5 |
Guo X P . Constrained optimization for average cost continuous-time Markov decision processes. IEEE Trans Autom Control, 2007, 52 (6): 1139- 1143
doi: 10.1109/TAC.2007.899040 |
6 | Guo X P , Hernández-Lerma O . Continuous-time Markov Decision Processes: Theory and Applications. Berlin: Springer, 2009 |
7 | Guo X P , Song X Y . Discounted continuous-time constrained Markov decision processes in Polish spaces. Ann Appl Probab, 2011, 21 (5): 2016- 2049 |
8 | Hernández-Lerma O , Lasserre J B . Discrete-Time Markov Control Processes. New York: Springer, 1996 |
9 | Hernández-Lerma O , Lasserre J B . Further Topics on Discrete-Time Markov Control Processes. New York: Springer, 1999 |
10 | Puterman M L . Markov Decision Processes. New York: Wiley, 1994 |
11 |
Feinberg E A , Shwartz A . Markov decision models with weighted discounted criteria. Math Oper Res, 1994, 19 (1): 152- 168
doi: 10.1287/moor.19.1.152 |
12 |
González-Hernández J , López-Martínez R R , Pérez-Hernández J R . Markov control processes with randomized discounted cost. Math Methods Oper Res, 2007, 65: 27- 44
doi: 10.1007/s00186-006-0092-2 |
13 |
Wu X , Guo X P . First passage optimality and variance minimization of Markov decision processes with varying discount factors. J Appl Probab, 2015, 52 (2): 441- 456
doi: 10.1239/jap/1437658608 |
14 |
Wu X , Zhang J Y . Finite approximation of the first passage models for discrete-time Markov decision processes with varying discount factors. Discrete Event Dyn Syst, 2016, 26 (4): 669- 683
doi: 10.1007/s10626-014-0209-3 |
15 | Hinderer K . Foundations of Non Stationary Dynamic Programming with Discrete Time Parameter. New York: Springer, 1970 |
16 |
Ye L E , Guo X P . Continuous-time Markov decision processes with state-dependent discount factors. Acta Appl Math, 2012, 121: 5- 27
doi: 10.1007/s10440-012-9669-3 |
17 | Bertsekas D , Tsitsiklis J . Neuro-Dynammic Programming. Boston: Athena Scientific, 1996 |
18 |
Cavazos-Cadena R . Finite-state approximations for denumerable state discounted Markov decision processes. Appl Math Optim, 1986, 14: 1- 26
doi: 10.1007/BF01442225 |
19 |
Dufour F , Prieto-Rumeau T . Finite linear programming approximations of constrained discounted Markov decision processes. SIAM J Control Optim, 2013, 51 (2): 1298- 1324
doi: 10.1137/120867925 |
20 |
Wu X , Guo X P . Convergence of Markov decision processes with constraints and state-action dependent discount factors. Sci China Math, 2020, 63 (1): 167- 182
doi: 10.1007/s11425-017-9292-1 |
21 | Saldi N , Linder T , Yuksel S . Asymptotic optimality and rates of convergence of quantized stationary policies in stochastic control. IEEE Transactions on Automatic Control, 2014, 60 (2): 553- 558 |
22 |
Saldi N , Linder T , Yuksel S . Near optimality of quantized policies in stochastic control under weak continuity conditions. J Math Anal Appl, 2016, 435: 321- 337
doi: 10.1016/j.jmaa.2015.10.008 |
23 | Lund R B , Meyn S P , Tweedie R L . Computable exponential convergence rates for stochastically ordered Markov processes. Ann Appl Probab, 1996, 6: 218- 237 |
[1] | Wen Yuzhen, Wang Shaolin. Stackelberg Stochastic Differential Game of Insurer and Reinsurer Under Mean-Variance Framework [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1327-1353. |
[2] | Liu Yu, Chen Guanggan, Li Shuyong. Nonlinear Stability of Traveling Waves for Stochastic Kuramoto-Sivashinsky Equation [J]. Acta mathematica scientia,Series A, 2025, 45(3): 790-806. |
[3] |
Chen Yating, Liu Haiyan, Chen Mi.
|
[4] | Yang Hong, Zhang Xiaoguang. A Stochastic SIS Epidemic Model on Simplex Complexes [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1392-1399. |
[5] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[6] | Wang Yankai, Peng Xingchun. Time-Consistent Risk Control and Investment Strategies With Transaction Costs [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1400-1414. |
[7] | Fan Xiequan,Hu Haijuan,Wu Hao,Ye Yinna. Comparison on the Criticality Parameters for Two Supercritical Branching Processes in Random Environments [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1440-1470. |
[8] |
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng.
Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter |
[9] | Yao Luogen,Liu Huan,Chen Qiqiong. Application of VG Distortion Operator in Option Pricing [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1575-1584. |
[10] | Lu Jiaxin,Dong Hua. Equilibrium Investment Strategy of DC Pension Plan with Mispricing and Return of Premiums Clauses Under the 4/2 Stochastic Volatility Model [J]. Acta mathematica scientia,Series A, 2023, 43(3): 939-956. |
[11] | Huang ,Liu Haiyan,Chen Mi. Proportional Reinsurance and Investment Based on the Ornstein-Uhlenbeck Process in the Presence of Two Reinsurers [J]. Acta mathematica scientia,Series A, 2023, 43(3): 957-969. |
[12] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[13] | Chen Yejun, Ding Huisheng. Asymptotically Almost Periodic Solutions for Stochastic Differential Equations in Infinite Dimensions [J]. Acta mathematica scientia,Series A, 2023, 43(2): 341-354. |
[14] | Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872. |
[15] | Junfeng Liu,Lei Mao,Zhi Wang. Moment Bounds for the Fractional Stochastic Heat Equation with Spatially Inhomogeneous White Noise [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1186-1208. |
|