Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 631-640.
Mi Chen1,2,3,Changwei Nie1,Haiyan Liu1,2,*()
Received:
2020-11-17
Online:
2022-04-26
Published:
2022-04-18
Contact:
Haiyan Liu
E-mail:rain6397@163.com
Supported by:
CLC Number:
Mi Chen,Changwei Nie,Haiyan Liu. Randomized Dividends in a Discrete Risk Model with Time-Correlated Claims[J].Acta mathematica scientia,Series A, 2022, 42(2): 631-640.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
0.7612 | 0.9249 | 1.0882 | 1.2519 | 1.4327 | 1.6373 | 1.8703 | 2.1362 | 2.4399 | |
0.7121 | 0.8950 | 1.0591 | 1.2205 | 1.3975 | 1.5972 | 1.8246 | 2.0840 | 2.3803 | |
0.6689 | 0.8687 | 1.0336 | 1.1930 | 1.3665 | 1.5620 | 1.7845 | 2.0382 | 2.3279 | |
0.6307 | 0.8454 | 1.0109 | 1.1686 | 1.3391 | 1.5309 | 1.7489 | 1.9976 | 2.2816 | |
0.5966 | 0.8246 | 0.9908 | 1.1468 | 1.3147 | 1.5031 | 1.7172 | 1.9614 | 2.2403 |
"
| 1.6893 | 1.4971 | 1.3001 | 1.1123 | 0.9449 | 0.8003 | 0.6765 | 0.5710 | 0.4816 | 0.4058 |
1.9841 | 1.9125 | 1.6609 | 1.4209 | 1.2072 | 1.0223 | 0.8642 | 0.7296 | 0.6153 | 0.5184 | |
2.2042 | 2.1461 | 2.0305 | 1.7371 | 1.4759 | 1.2499 | 1.0565 | 0.8919 | 0.7522 | 0.6338 | |
2.3646 | 2.3201 | 2.2204 | 2.0786 | 1.7660 | 1.4955 | 1.2641 | 1.0672 | 0.9001 | 0.7584 | |
2.4837 | 2.4489 | 2.3625 | 2.2405 | 2.0902 | 1.7701 | 1.4963 | 1.2632 | 1.0654 | 0.8976 |
1 | De Finetti B . Su un'impostazione alternativa della teoria collettiva del rischio. Transactions of the 15th International Congress of Actuaries, 1957, 2: 433- 443 |
2 | Claramunt M M , Marmol M , Escolano A . A note on the expected present value of dividends with a constant barrier in the discrete time modle. Insurance Mathematics and Economics, 2003, 2 (2): 149- 159 |
3 | Jeanblanc-Picque M , Shiryaev A N . Optimization of the flow of dividends. Russian Mathematical Surveys, 1995, 50 (2): 57- 77 |
4 |
Chen M , Peng X F , Guo J Y . Optimal dividend problem with a nonlinear regular-singular stochastic control. Insurance: Mathematics and Economics, 2013, 52 (3): 448- 456
doi: 10.1016/j.insmatheco.2013.02.010 |
5 |
Chen M , Yuen K C . Optimal dividend and reinsurance in the presence of two reinsurers. Journal of Applied Probability, 2016, 53 (2): 554- 571
doi: 10.1017/jpr.2016.20 |
6 | Peng X F , Bai L H , Guo J Y . Optimal control with restrictions for a diffusion risk model under constant interest force. Applied Mathematics & Optimization, 2016, 73: 115- 136 |
7 |
Zhou X . On a classical risk model with a constant divident barrier. North American Actuarial Journal, 2005, 9: 95- 108
doi: 10.1080/10920277.2005.10596228 |
8 |
Landriault D . Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insurance Mathematics and Economics, 2008, 42 (1): 31- 38
doi: 10.1016/j.insmatheco.2006.12.002 |
9 |
Gerber H U , Shiu E S W , Yang H . An elementary approach to discrete models of dividend strategies. Insurance Mathematics and Economics, 2010, 46 (1): 109- 116
doi: 10.1016/j.insmatheco.2009.09.010 |
10 |
Peng X H , Su W , Zhang Z M . On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial and Management Optimization, 2020, 16 (4): 1967- 1986
doi: 10.3934/jimo.2019038 |
11 |
Tan J Y , Yang X Q . The compound binomial model with randomized decisions on paying dividends. Insurance: Mathematics and Economics, 2006, 39 (1): 1- 18
doi: 10.1016/j.insmatheco.2006.01.001 |
12 |
Bao Z . A note on the compound binomial model with randomized dividend strategy. Applied Mathematics and Computation, 2007, 194: 276- 286
doi: 10.1016/j.amc.2007.04.023 |
13 |
Landriault D . Randomized dividends in the compound binomial model with a general premium rate. Scandinavian Actuarial Journal, 2008, 2008 (1): 1- 15
doi: 10.1080/03461230701642489 |
14 |
He L , Yang X Q . The compound binomial model with randomly paying dividends to shareholders and policyholders. Insurance: Mathematics and Economics, 2010, 46 (3): 443- 449
doi: 10.1016/j.insmatheco.2010.01.001 |
15 |
Yuen K C , Guo J Y . Ruin probabilities for time-correlated claims in the compound binomial model. Insurance Mathematics and Economics, 2001, 29 (1): 47- 57
doi: 10.1016/S0167-6687(01)00071-3 |
16 |
Xiao Y , Guo J Y . The compound binomial risk model with time-correlated claims. Insurance: Mathematics and Economics, 2007, 41 (1): 124- 133
doi: 10.1016/j.insmatheco.2006.10.009 |
17 |
Xie J , Zou W . Expected present value of total dividends in a delayed claims risk model under stochastic interest rates. Insurance: Mathematics and Economics, 2010, 46 (2): 415- 422
doi: 10.1016/j.insmatheco.2009.12.007 |
18 |
Li J Z , Wu R . The Gerber-Shiu discounted penalty function for a compound binomial risk model with by-claims. Acta Mathematicae Applicatae Sinica, 2015, 31 (1): 181- 190
doi: 10.1007/s10255-015-0459-3 |
19 |
Yuen K C , Li J , Wu R . On a discrete-time risk model with delayed claims and dividends. Risk and Decision Analysis, 2013, 4 (1): 3- 16
doi: 10.3233/RDA-2012-0073 |
20 |
Liu C L , Zhang Z M . On a discrete risk model with delayed claims and randomized dividend strategy. Advances in Difference Equations, 2015, 2015 (1): 1- 14
doi: 10.1186/s13662-014-0331-4 |
21 |
Liu J , Huang Y , Xiang X Y , et al. On a discrete interaction risk model with delayed claims and randomized dividends. Communications in Statistics-Theory and Methods, 2020,
doi: 10.1080/03610926.2020.1836221 |
22 | Yang H , Zhang Z M . On class of renewal risk model with random income. Applied Statistic Models in Bussiness and Industry, 2009, 25 (6): 678- 695 |
23 | Bao Z H , Liu H . The compound binomial risk model with delayed claims and random income. Mathematical and Computer Modelling, 2012, 55 (3): 1315- 1323 |
24 | Gao J W , Wu L Y . On the Gerber-Shiu discounted penalty function in a risk model with two types of delayed-claims and random income. Journal of Computational and Applied Mathematics, 2014, 269 (1): 42- 52 |
25 |
Zhou J M , Mo X Y , Ou H , et al. Expected present value of total dividends in the compound binomial model with delayed claims and random income. Acta Mathematica Scientia, 2013, 33 (6): 1639- 1651
doi: 10.1016/S0252-9602(13)60111-3 |
26 |
Deng Y C , Liu J , Huang Y , et al. On a discrete interaction risk model with delayed claims and stochastic incomes under random discount rates. Communications in Statistics-Theory and Methods, 2018, 47 (23): 5867- 5883
doi: 10.1080/03610926.2017.1406518 |
[1] | Wen Yuzhen, Wang Shaolin. Stackelberg Stochastic Differential Game of Insurer and Reinsurer Under Mean-Variance Framework [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1327-1353. |
[2] | Liu Yu, Chen Guanggan, Li Shuyong. Nonlinear Stability of Traveling Waves for Stochastic Kuramoto-Sivashinsky Equation [J]. Acta mathematica scientia,Series A, 2025, 45(3): 790-806. |
[3] |
Chen Yating, Liu Haiyan, Chen Mi.
|
[4] | Yang Hong, Zhang Xiaoguang. A Stochastic SIS Epidemic Model on Simplex Complexes [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1392-1399. |
[5] | Wang Qiufen, Zhang Shuwen. Stochastic Predator-Prey System with Fear Effect and Holling-Type III Functional Response [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1380-1391. |
[6] | Wang Yankai, Peng Xingchun. Time-Consistent Risk Control and Investment Strategies With Transaction Costs [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1400-1414. |
[7] | Fan Xiequan,Hu Haijuan,Wu Hao,Ye Yinna. Comparison on the Criticality Parameters for Two Supercritical Branching Processes in Random Environments [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1440-1470. |
[8] |
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng.
Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter |
[9] | Yao Luogen,Liu Huan,Chen Qiqiong. Application of VG Distortion Operator in Option Pricing [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1575-1584. |
[10] | Lu Jiaxin,Dong Hua. Equilibrium Investment Strategy of DC Pension Plan with Mispricing and Return of Premiums Clauses Under the 4/2 Stochastic Volatility Model [J]. Acta mathematica scientia,Series A, 2023, 43(3): 939-956. |
[11] | Huang ,Liu Haiyan,Chen Mi. Proportional Reinsurance and Investment Based on the Ornstein-Uhlenbeck Process in the Presence of Two Reinsurers [J]. Acta mathematica scientia,Series A, 2023, 43(3): 957-969. |
[12] | Chen Yong,Gu Xiangmeng. An Improved Berry-Esséen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes [J]. Acta mathematica scientia,Series A, 2023, 43(3): 855-882. |
[13] | Chen Yejun, Ding Huisheng. Asymptotically Almost Periodic Solutions for Stochastic Differential Equations in Infinite Dimensions [J]. Acta mathematica scientia,Series A, 2023, 43(2): 341-354. |
[14] | Yanjun Zhao,Xiaohui Sun,Li Su,Wenxuan Li. Qualitative Analysis of Stochastic SIRS Epidemic Model with Logistic Growth and Beddington-DeAngelis Incidence Rate [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1861-1872. |
[15] | Junfeng Liu,Lei Mao,Zhi Wang. Moment Bounds for the Fractional Stochastic Heat Equation with Spatially Inhomogeneous White Noise [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1186-1208. |
|