Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 969-977.
Previous Articles Next Articles
Nan Fan,Caishi Wang*(),Hong Ji
Received:
2021-07-29
Online:
2022-08-26
Published:
2022-08-08
Contact:
Caishi Wang
E-mail:wangcs@nwnu.edu.cn
Supported by:
CLC Number:
Nan Fan,Caishi Wang,Hong Ji. Perturbations of Canonical Unitary Involutions Associated with Quantum Bernoulli Noises[J].Acta mathematica scientia,Series A, 2022, 42(4): 969-977.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Wang C S , Chai H F , Lu Y C . Discrete-time quantum Bernoulli noises. J Math Phys, 2010, 51 (5): 53528
doi: 10.1063/1.3431028 |
2 | Privault N . Stochastic analysis of Bernoulli processes. Probab Surv, 2008, 5 (1): 435- 483 |
3 |
Chen J S . Invariant states for a quantum Markov semigroup constructed from quantum Bernoulli noises. Open Syst Inf Dyn, 2018, 25 (4): 1850019
doi: 10.1142/S1230161218500191 |
4 |
Chen J S . Quantum Feller semigroup in terms of quantum Bernoulli noises. Stoch Dyn, 2021, 21 (4): 2150015
doi: 10.1142/S0219493721500155 |
5 |
Ren S L , Wang C S , Tang Y L . Quantum Bernoulli noises approach to Stochastic Schrödinger equation of exclusion type. J Math Phys, 2020, 61 (6): 063509
doi: 10.1063/1.5138370 |
6 |
Wang C S , Tang Y L , Ren S L . Weighted number operators on Bernoulli functionals and quantum exclusion semigroups. J Math Phys, 2019, 60 (11): 113506
doi: 10.1063/1.5120102 |
7 | Wang C S , Ren S L , Tang Y L . Open quantum random walk in terms of quantum Bernoulli noise. Quantum Inf Process, 2018, 17 (3): 1- 14 |
8 | Nourdin I , Peccati G , Reinert G . Stein's method and stochastic analysis of Rademacher functionals. Electron J Probab, 2010, 15 (55): 1703- 1742 |
9 |
Wang C . Higher-dimensional open quantum walk in environment of quantum Bernoulli noises. Stoch Dyn, 2022, 22 (1): 2250001
doi: 10.1142/S0219493722500010 |
10 |
Wang C , Wang C S . Higher-dimensional quantum walk in terms of quantum Bernoulli noises. Entropy, 2020, 22 (5): 504
doi: 10.3390/e22050504 |
11 |
Zheng G Q . Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals. Stochastic Process Appl, 2017, 127 (5): 1622- 1636
doi: 10.1016/j.spa.2016.09.002 |
12 |
Wang C S , Ren S L , Tang Y L . A new limit theorem for quantum walk in terms of quantum Bernoulli noises. Entropy, 2020, 22 (4): 486
doi: 10.3390/e22040486 |
13 | Wang C S , Ye X J . Quantum walk in terms of quantum Bernoulli noises. Quantum Inf Process, 2016, 15 (5): 1- 12 |
14 |
Segawa E , Suzuki A . Spectral mapping theorem of an abstract quantum walk. Quantum Inf Process, 2019, 18 (11): 333
doi: 10.1007/s11128-019-2448-6 |
15 | 韩琦, 郭婷, 殷世德, 陈芷禾. 直线上空间非齐次三态量子游荡的平稳测度. 数学物理学报, 2019, 39A (1): 133- 142 |
Han Q , Guo T , Yin S D , Chen Z H . The stationary measure of a space-inhomogeneous three-state quantum walk on the line. Acta Math Sci, 2019, 39A (1): 133- 142 | |
16 |
林运国. 时间非齐次二态量子游荡的演化过程分析. 数学物理学报, 2021, 41 (4): 1097- 1110
doi: 10.3969/j.issn.1003-3998.2021.04.017 |
Lin Y G . The analysis of evolution process in a time-inhomogeneous two-state quantum walk. Acta Math Sci, 2021, 41 (4): 1097- 1110
doi: 10.3969/j.issn.1003-3998.2021.04.017 |
|
17 |
邱汶汶, 齐雅茹. 一类无界算子的二次数值域和谱. 数学物理学报, 2020, 40 (6): 1420- 1430
doi: 10.3969/j.issn.1003-3998.2020.06.002 |
Qiu W W , Qi Y R . The quadratic numerical range and the spectrum of some unbounded block operator matrices. Acta Math Sci, 2020, 40 (6): 1420- 1430
doi: 10.3969/j.issn.1003-3998.2020.06.002 |
[1] | Wang Xiaomin, Wu Deyu. The Adjoint Operator of Commutators [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1426-1432. |
[2] | Shen Runshuan, Hou Guolin. The Fine Pseudo-spectra of$2 \times 2$Diagonal Block Operator Matrices [J]. Acta mathematica scientia,Series A, 2024, 44(1): 12-25. |
[3] | Jian Weigang, Long Wei. Tauberian Theorem for Asymptotically Periodic Functions and Its Application to Abstract Cauchy Problems [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1699-1709. |
[4] | Xiong Ting. Spectrality of Moran Measures with Three-Element Didit Sets [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1814-1830. |
[5] | Qian Zhixiang. Discreteness of the Spectrum of a Class of Higher Order Self-adjoint Vector Differential Operators and its Application [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1009-1023. |
[6] | Yang Dengyun, Zhang Jinguo, Tao Yongqian. Spectral Geometry of Willmore and Extremal Hypersurfaces [J]. Acta mathematica scientia,Series A, 2023, 43(1): 35-42. |
[7] | Ding Xuanhao, Huang Yuhao, Li Yongning. The Unitary Equivalence of the Toeplitz Operators on the Harmonic Hardy Space [J]. Acta mathematica scientia,Series A, 2023, 43(1): 27-34. |
[8] | Rui Hua,Yaru Qi. The Essential Spectrum of a Class of Anti-Triangular Operator Matrices [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1611-1618. |
[9] | Yage Tong,Kaisu Wu. Spectral Analysis of the Main Operator of Rotenberg Equation with Time Delay Under Nonsmooth Boundary Conditions [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1320-1331. |
[10] | Haixiong Li,Xinlin Wu,Daoxin Ding. Multiple Spectra of Self-Similar Measures with Three Digits [J]. Acta mathematica scientia,Series A, 2022, 42(3): 705-715. |
[11] | Yunguo Lin. The Analysis of Evolution Process in a Time-Inhomogeneous Two-State Quantum Walk [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1097-1110. |
[12] | Wenwen Qiu,Yaru Qi. The Quadratic Numerical Range and the Spectrum of Some Unbounded Block Operator Matrices [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1420-1430. |
[13] | Gaixia Wang,Jixuan Liu,Xuezhi Li. Stability of Age-Structured with Proportion of Infected Groups or Enter the Latent Epidemiological Model with Varying Population Size [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1260-1271. |
[14] | Xiaomin Yang,Zhipeng Qiu,Ling Ding. Complex Dynamics of an Intraguild Predation Model [J]. Acta mathematica scientia,Series A, 2019, 39(4): 963-970. |
[15] | Lin Li, Alatancang. Essential and Weyl Spectra of 2×2 Bounded Block Operator Matrices [J]. Acta mathematica scientia,Series A, 2019, 39(3): 431-440. |
|