Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1462-1472.
Previous Articles Next Articles
Received:
2021-03-26
Online:
2022-10-26
Published:
2022-09-30
Supported by:
CLC Number:
Xuelei Wang. Large Multiple Periodic Solutions for the 1-Dimensional Sub-Linear p-Laplacian Equation[J].Acta mathematica scientia,Series A, 2022, 42(5): 1462-1472.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Manásevich R , Zanolin F . Time mapping and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Analysis TMA, 1993, 21, 269- 291
doi: 10.1016/0362-546X(93)90020-S |
2 |
Del Pino M A , Manásevich R . Infinitely many 2π-periodic solutions for a problem arising in nonlinear elasticity. J.Differential Equations, 1993, 103, 260- 277
doi: 10.1006/jdeq.1993.1050 |
3 |
Amster P , Napoli P . Landesman-Lazer type conditions for a system of p-Laplacian like operators. J Math Anal Appl, 2007, 326, 1236- 1243
doi: 10.1016/j.jmaa.2006.04.001 |
4 | Del Pino M A , Manásevich R . Multiple solutions for the p-Laplacian under global nonresonance. Proc Amer Math Soc, 1991, 112, 131- 138 |
5 |
Del Pino M A , Drábek P , Manásevich R . The Fredholm alternative at the first eigen-value for the one-dimensional p-Laplacian. J Differential Equations, 1999, 151, 386- 419
doi: 10.1006/jdeq.1998.3506 |
6 |
Del Pino M A , Manásevich R , Elgueta M . A homotopic deformation along p of a Leray-Schauder degree results and existence for $(|u|^{p-2}u')'+f(t, u)=0, u(0)=u(1)=0, p>1.$. J Differential Equations, 1989, 80, 1- 13
doi: 10.1016/0022-0396(89)90093-4 |
7 |
Drábek P , Takac P . A counterexample to the Fredholm alternative for the p-Laplacian. Proc Amer Math Soc, 1999, 127, 1079- 1087
doi: 10.1090/S0002-9939-99-05195-3 |
8 | Drábek P , Robinson S B . Resonance problems for the the one-dimensional p-Laplacian. Proc Amer Math Soc, 2000, 128, 755- 765 |
9 |
Manásevich R , Zanolin F . Time mapping and multiplicity of solutions for the one-dimensional p-Laplacian. Nonlinear Analysis TMA, 1992, 18, 79- 92
doi: 10.1016/0362-546X(92)90048-J |
10 |
Zhang M . Nonuniform nonresonance of semilinear differential equations. J Differential Equations, 2000, 166, 33- 50
doi: 10.1006/jdeq.2000.3798 |
11 |
Xiong M , Wu S , Liu J . Periodic solutions for the 1-dismensional p-Laplacian equation. J Math Anal Appl, 2007, 325, 879- 888
doi: 10.1016/j.jmaa.2006.02.027 |
12 |
Chu K D , Hai D D . Positive solutions for the one-dimensional singular superlinear p-laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1): 241- 252
doi: 10.3934/cpaa.2020013 |
13 |
Jacobowitz H . Periodic solutions of $x''+f(x, t)=0$ via the Poincaré -Birkhoff theorem. J Differential Equations, 1976, 20, 37- 52
doi: 10.1016/0022-0396(76)90094-2 |
14 | 相福香. 一维p-次线性Laplacian方程的无穷多次调和解. 硕士学位论文. 苏州: 苏州大学, 2009 |
Xiang F X. Infinitely Mang Subharmonic Solutions for One-dimensional p-sublinear Laplacian Equations. Master's Degree Thesis. Suzhou: Soochow University, 2009 | |
15 | Hale J. Ordinary Differential Equations. Mineola New York: Dover Publications, INC, 2009 |
16 | 丁同仁. 常微分方程定性方法的应用. 北京: 高等教育出版社, 2004, |
Ding T . Applications of Qualitative Methods of Ordinary Differential Equations. Beijing: Higher Education Press, 2004, |
|