[1] |
Guo Z, Li H Z. A variational problem for submanifolds in a sphere. Monatsh Math, 2007, 152: 295-302
doi: 10.1007/s00605-007-0476-2
|
[2] |
Li H Z. Willmore hypersurfaces in a sphere. Asian J of Math, 2001, 5: 365-378
doi: 10.4310/AJM.2001.v5.n2.a4
|
[3] |
Milnor J. Eigenvalues of the Laplace operator on certain manifolds. Proc Nat Acad Sci, 1964, 51: 542
doi: 10.1073/pnas.51.4.542
|
[4] |
Ikeda A. On spherical space forms which are isospectral but not isometric. J Math Soc Japan, 1983, 35: 437-444
|
[5] |
Donnelly H. Spectral invariants of the second variation operator. Illinois J Math, 1977, 21: 185-189
|
[6] |
Hasegawa T. Spectral geometry of closed minimal submanifolds in a space form, real and complex. Kodai Math J, 1980, 3: 224-252
|
[7] |
Ding Q. On spectral characterizations of minimal hypersurface in a sphere. Kodai Math J, 1994, 17: 320-328
|
[8] |
Li Z H, Wang W. On spectral characterizations of Willmore hypersurfaces in a sphere. Appl Math J Chinese Univ, 2009, 4: 490-494
|
[9] |
Yang D, Xu H, Fu H. New spectral characterizations of extremal hypersurfaces. Acta Mathematica Scientia, 2013, 33B(5): 1269-1274
|
[10] |
Deng Q, Gu H, Wei Y. Closed Willmore minimal hypersurfaces with constant scalar curvature in $S^5(1)$ are isoparametric. Advances in Mathematics, 2017, 9: 278-305
|
[11] |
Li P. On the spectral rigidity of Einstein-type Kahler manifolds. arXiv:math.DG 1804.00517
|
[12] |
Patodi U K. Curvature of the fundamental solution of the heat operator. Boll Un Mat Ital, 1974, 10: 380-385
|