| [1] | Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999 | | [2] | Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. Switzerland: Gordon and Breach, 1993 | | [3] | Odzijewicz T, Malinowska A B, Torres D F M. Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr Appl Anal, 2012, 2012(2): 919-929 | | [4] | Herrmann R. Common aspects of $q$-deformed Lie algebras and fractional calculus. Physica A, 2010, 389(21): 4613-4622 | | [5] | Millerand K, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993 | | [6] | Giona M, Cerbelli S, Roman H E. Fractional diffusion matrix and relaxation in complex viscoelastic materials. Physica A, 1992, 191(1-4): 449-453 | | [7] | Roman H E, Alemany P A. Continuous-time random walks and the fractional diffusion matrix. J Phys A-Math Gen, 1994, 27( 10): 3407 | | [8] | Berkowitz B, Scher H, Silliman S E. Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour Res, 2000, 36(1): 149-158 | | [9] | Ba Y, Jiang L, Ou N. A two-stage ensemble Kalman filter based on multiscale model reduction for inverse problems in time fractional diffusion-wave matrixs. J Comput Phys, 2018, 374: 300-330 | | [10] | Agrawal O P. Solution for a fractional diffusion-wave matrix defined in a bounded domain. Nonlinear Dynam, 2002, 29(1): 145-155 | | [11] | Chen A, Li C. Numerical solution of fractional diffusion-wave matrix. Numer Funct Anal Optim, 2016, 37(1): 19-39 | | [12] | Jiang H, Liu F, Turner I, et al. Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion matrixs in a finite domain. Comput Math Appl, 2012, 64(10): 3377-3388 | | [13] | Lopushansky A, Lopushansky O, Sharyn S. Nonlinear inverse problem of control diffusivity parameter determination for a space-time fractional diffusion matrix. Appl Math Comput, 2021, 390: 125589 | | [14] | Yang F, Zhang Y, Liu X, et al. The quasi-boundary value method for identifying the initial value of the space-time fractional diffusion matrix. Acta Math Sci, 2020, 40B(3): 641-658 | | [15] | Tatar S, Tinaztepe R, Ulusoy S. Determination of an unknown source term in a space-time fractional diffusion matrix. J Fract Calc Appl, 2015, 6(1): 83-90 | | [16] | Tuan N H, Long L D. Fourier truncation method for an inverse source problem for space-time fractional diffusion matrix. Electron J Differ Eq, 2017, 122: 1-16 | | [17] | Zhang Y X, Jia J, Yan L. Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion matrix. Inverse Probl, 2018, 34( 12): 125002 | | [18] | Tatar S, Ulusoy S. A uniqueness result for an inverse problem in a space-time fractional diffusion matrix. Electron. J Differ Equ, 2013, 257: 1-9 | | [19] | Tatar S ?, T?naztepe R, Ulusoy S. Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion matrix. Appl Anal, 2016, 95(1): 1-23 | | [20] | Tatar S, Ulusoy S. An inverse source problem for a one-dimensional space-time fractional diffusion matrix. Appl Anal, 2015, 94(11): 2233-2244 | | [21] | Jin B, Rundell W. A tutorial on inverse problems for anomalous diffusion processes. Inverse probl, 2015, 31( 3): 035003 | | [22] | Tuan N A, O'Regan D, Baleanu D, et al. On time fractional pseudo-parabolic matrixs with nonlocal integral conditions. Evol Equ Control The, 2022, 11(1): 225-238 | | [23] | Liao K F, Li Y S, Wei T. The identification of the time-dependent source term in time-fractional diffusion-wave matrixs. East Asian J Appl Math, 2019, 9(2): 330-354 | | [24] | Yan X B, Wei T. Determine a space-dependent source term in a time fractional diffusion-wave matrix. Acta Appl Math, 2020, 165(1): 163-181 | | [25] | Wei T, Yan X. Recovering a space-dependent source term in a time-fractional diffusion wave matrix. J Appl Anal Comput, 2019, 9(5): 1801-1821 | | [26] | Yan X, Zhang Z, Wei T. Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave matrix. Chaos Soliton Fract, 2022, 157: 111901 | | [27] | Xian J, Wei T. Determination of the initial data in a time-fractional diffusion-wave problem by a final time data. Comput Math Appl, 2019, 78(8): 2525-2540 | | [28] | Yang F, Sun Q X, Li X X. Three Landweber iterative methods for solving the initial value problem of time-fractional diffusion-wave matrix on spherically symmetric domain. Inverse Probl Sci En, 2021, 29(12): 2306-2356 | | [29] | Wei T, Zhang Y. The backward problem for a time-fractional diffusion-wave matrix in a bounded domain. Comput Math Appl, 2018, 75(10): 3632-3648 | | [30] | Yang F, Pu Q, Li X X, et al. The truncation regularization method for identifying the initial value on non-homogeneous time-fractional diffusion-wave matrixs. Mathematics, 2019, 7( 11): 1007 | | [31] | Jiang S Z, Wu Y J. Recovering space-dependent source for a time-space fractional diffusion wave matrix by fractional Landweber method. Inverse Probl Sci En, 2021, 29(7): 990-1011 | | [32] | Yang F, Zhang Y, Li X X. Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave matrix. Numer Algorithms, 2020, 83(4): 1509-1530 | | [33] | Chen W, Li C. Maximum principles for the fractional $p$-Laplacian and symmetry of solutions. Adv Math, 2018, 335: 735-758 | | [34] | Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 | | [35] | Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problem. Dordrecht: Kluwer Academic Publishers, 1996 | | [36] | Sun Z. The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations. Beijing: Science Press, 2009 |
|